Find the Fourier Sine and Cosine transformations of the following function f (x) =2 if x< 0<a and f(x)=0 if x>a
Solution,
For the Fourier sine transform,
By definition;
"f_s[{f(x)}]=\\hat f_s(w)=\\sqrt{\\frac2\u03c0}\\int_0^\\infin f(x)sin(wx)dx"
Hence;
"\\hat f_s(w)=\\sqrt{\\frac2\u03c0}[\\int_0^a2sin(wx)dx+0]"
"\\hat f_s(w)=\\sqrt\\frac2\u03c0[\\frac{-2cos(wx)}{w}|_0^a]"
"\\hat f_s(w)=-\\frac2w\\sqrt\\frac2\u03c0(cos(wa)-cos0)"
"\\hat f_s(w)=-\\frac2w\\sqrt\\frac2\u03c0(cos(wa)-1)"
For cosine Fourier transform,
By definition;
"\\hat f_c(w)=\\sqrt\\frac2\u03c0\\int_0^\\infin f(x)cos(wx)dx"
"\\hat f_c(w)=\\sqrt\\frac2\u03c0[\\int_0^a2cos(wx)dx+0]"
"\\hat f_c(w)=\\sqrt\\frac2\u03c0(\\frac{2sin(wx)}{w}|_0^a)"
"\\hat f_c(w)=\\frac2w\\sqrt\\frac2\u03c0(sin(wa))"
Comments
Leave a comment