Solution,
For the Fourier sine transform,
By definition;
f s [ f ( x ) ] = f ^ s ( w ) = 2 π ∫ 0 ∞ f ( x ) s i n ( w x ) d x f_s[{f(x)}]=\hat f_s(w)=\sqrt{\frac2π}\int_0^\infin f(x)sin(wx)dx f s [ f ( x ) ] = f ^ s ( w ) = π 2 ∫ 0 ∞ f ( x ) s in ( w x ) d x
Hence;
f ^ s ( w ) = 2 π [ ∫ 0 a 2 s i n ( w x ) d x + 0 ] \hat f_s(w)=\sqrt{\frac2π}[\int_0^a2sin(wx)dx+0] f ^ s ( w ) = π 2 [ ∫ 0 a 2 s in ( w x ) d x + 0 ]
f ^ s ( w ) = 2 π [ − 2 c o s ( w x ) w ∣ 0 a ] \hat f_s(w)=\sqrt\frac2π[\frac{-2cos(wx)}{w}|_0^a] f ^ s ( w ) = π 2 [ w − 2 cos ( w x ) ∣ 0 a ]
f ^ s ( w ) = − 2 w 2 π ( c o s ( w a ) − c o s 0 ) \hat f_s(w)=-\frac2w\sqrt\frac2π(cos(wa)-cos0) f ^ s ( w ) = − w 2 π 2 ( cos ( w a ) − cos 0 )
f ^ s ( w ) = − 2 w 2 π ( c o s ( w a ) − 1 ) \hat f_s(w)=-\frac2w\sqrt\frac2π(cos(wa)-1) f ^ s ( w ) = − w 2 π 2 ( cos ( w a ) − 1 )
For cosine Fourier transform,
By definition;
f ^ c ( w ) = 2 π ∫ 0 ∞ f ( x ) c o s ( w x ) d x \hat f_c(w)=\sqrt\frac2π\int_0^\infin f(x)cos(wx)dx f ^ c ( w ) = π 2 ∫ 0 ∞ f ( x ) cos ( w x ) d x
f ^ c ( w ) = 2 π [ ∫ 0 a 2 c o s ( w x ) d x + 0 ] \hat f_c(w)=\sqrt\frac2π[\int_0^a2cos(wx)dx+0] f ^ c ( w ) = π 2 [ ∫ 0 a 2 cos ( w x ) d x + 0 ]
f ^ c ( w ) = 2 π ( 2 s i n ( w x ) w ∣ 0 a ) \hat f_c(w)=\sqrt\frac2π(\frac{2sin(wx)}{w}|_0^a) f ^ c ( w ) = π 2 ( w 2 s in ( w x ) ∣ 0 a )
f ^ c ( w ) = 2 w 2 π ( s i n ( w a ) ) \hat f_c(w)=\frac2w\sqrt\frac2π(sin(wa)) f ^ c ( w ) = w 2 π 2 ( s in ( w a ))
Comments