solve(d^2+dd'-6d'^2)z=cos(2x+y)
The auxiliary equation is; "m^{2}+m-6=0\\newline (m-2)(m+3)=0\\newline m=2,\\ -3"
C.F = f1(y+2x)+f2(y-3x)
P.I = "\\frac{1}{D^{2}+DD^{I}-6{D^{I}}^{2}}cos(2x+y)"
=R.P"\\frac{1}{(D-2D^{I})(D+3D^{I})}e^{i(2x+y)}"
=R.P"\\frac{1}{(2i+3(i))}e^{i(2x+y)}"
=R.P"\\frac{-i}{5}x(cos(2x+y)+i\\ sin(2x+y))"
="\\frac{-x}{5}cos(2x+y)"
z=f1(y+2x)+f2(y-3x)-"\\frac{x}{5}cos(2x+y)"
Comments
Leave a comment