Solve the following systems of equations
2dx/dt+dy/dt-3x-y=t
dx/dt+dy/dt-4x-y=et
"x'+y'-4x-y=e^t"
"y'=-x'+4x+y+e^t"
"x'+x=t-e^t"
"\\mu(t)=e^t"
"e^tx'+e^tx=e^tt-e^te^t"
"(e^tx)'=e^tt-e^{2t}"
Integrate
"\\int e^ttdt=te^t-e^t+C_3"
"e^tx=te^t-e^t-\\dfrac{1}{2}e^{2t}+C_1"
"x(t)=t-1-\\dfrac{1}{2}e^t+C_1e^{-t}"
"x'=1-\\dfrac{1}{2}e^t-C_1e^{-t}"
"2-e^t-2C_1e^{-t}+y'-3t+3+\\dfrac{3}{2}e^t-3C_1e^{-t}-y=t"
"y'-y=4t-5-\\dfrac{1}{2}e^t+5C_1e^{-t}"
"\\mu(t)=e^{-t}"
"e^{-t}y'-e^{-t}y=4te^{-t}-5e^{-t}-\\dfrac{1}{2}+5C_1e^{-2t}"
"(e^{-t}y)'=4te^{-t}-5e^{-t}-\\dfrac{1}{2}+5C_1e^{-2t}"
Integrate
"e^{-t}y=-4te^{-t}-4e^{-t}+5e^{-t}-\\dfrac{1}{2}t-\\dfrac{5}{2}C_1e^{-2t}+C_2"
"y(t)=-4t+1-\\dfrac{1}{2}te^{t}-\\dfrac{5}{2}C_1e^{-t}+C_2e^{t}"
"y(t)=-4t+1-\\dfrac{1}{2}te^{t}-\\dfrac{5}{2}C_1e^{-t}+C_2e^{t}"
Comments
Leave a comment