Find y as a function of t
if 16y′′ + 136y′ +289y = 0,
y(0) = 7 , y′(0) = 3.
The characteristic equation
"(4r+17)^2=0"
"r_{1,2}=-\\dfrac{17}{4}"
The general solution of the homogeneous equation is
"y(0)=7:c_1e^{(-17\/4)(0)}+c_2(0)e^{(-17\/4)(0)}=7"
"c_1=7"
"y=7e^{(-17\/4)t}+c_2te^{(-17\/4)t}"
"y'=-\\dfrac{119}{4}e^{(-17\/4)t}+c_2e^{(-17\/4)t}-\\dfrac{17}{4}c_2te^{(-17\/4)t}"
"y'(0)=3:-\\dfrac{119}{4}+c_2-0=3"
"c_2=\\dfrac{131}{4}"
The solution of the given Initial Value Problem is
Comments
Leave a comment