Answer to Question #218174 in Differential Equations for Dhanush

Question #218174
Solve (D2
-3D+2)y = 2cos (2x+3)+2 ex
.
1
Expert's answer
2021-07-19T18:54:13-0400

Solution;

(D2-3D+2)y=2cos(2x+3)+2ex

Rewrite;

D2y-3Dy+2y=2cos(2x+3)+2ex

y"-3y'+2y=2cos(2x+3)+2ex

The equation can be solved using variation of parameters.

The general solution takes the form ;

y=yc+yp

To solve for yc;

An auxiliary equation can be given as;

m2-3m+2=(m-2)(m-1);

m=2 or m=1

yc=C1e2x+C2ex

To solve yp let yp=yp1+yp2 since g(x) of the equation is a combination.

Solve yp1 from y"-3y'+2y=2cos(2x+3)

Let yp1=Acos(2x+3)+Bsin(2x+3)

"y'_{p1}"=-2Asin(2x+3)+2Bsin(2x+3)

"y''_{p1}" =-4Acos(2x+3)-4Bcos(2x+3)

Replace back in the equation;

-4Acos(2x+3)-4Bsin(2x+3)-3{-2Asin(2x+3)+2Bcos(2x+3)}+2{Acos(2x+3)+Bsin(2x+3)}=2cos(2x+3)

Distribute;

(-4A-6B+2A)cos(2x+3)+(-4B+6A+2B)sin(2x+3)=2cos(2x+3)

This means;

-4A-6B+2A=2

-4B+6A+2B=0

Solve for A and B using both equation;

B=3A

-4A-6×3A+2A=2

-4A-18A+3A=2

A="\\frac{-1}{10}" ,B=-"\\frac{3}{10}"

So that;

yp1="\\frac{-1}{10}" cos(2x+3)-"\\frac{3}{10}" sin(2x+3)

Solve yp2 from y"-3y'+2y=2ex

Let yp2=Axex

"y'_{p2}" =A(ex+xex)ex=A(1+x)ex

"y''_{p2}" =A(2ex+xex)=A(2+x)ex

Substitute in the equation;

A(2+x)ex-3(A(1+x)ex)+2Axex=2ex

Distribute;

(2A+Ax-3A-3Ax+2Ax)ex=2ex

2A-3A=2

A=-2

yp2=-2xex

The general solution of the equation will be;

y=yc+yp

y=C1e2x+C2ex-"\\frac{1}{10}"cos(2x+3)-"\\frac{3}{10}"sin(2x+3) -2xex

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog