Homogeneous equation
Characteristic equation
"r=\\pm i"
The general solution of the homogeneous equation is
Find the partial solution of the nonhomogeneous equation in the form
"y_p'=3Ax^2+2Bx+C+Ee^x\\cos x-Ee^x\\sin x"
"+Fe^x\\sin x+Fe^x\\cos x"
"-Ee^x\\sin x-Ee^x\\cos x+Fe^x\\sin x+Fe^x\\cos x"
"+Fe^x\\cos x-Fe^x\\sin x"
Substitute
"+Ax^3+Bx^2+Cx+D+Ee^x\\cos x+Fe^x\\sin x"
"=x^3+e^x\\cos x"
"x^3: A=1"
"x^2: B=0"
"x^1: 6A+C=0"
"x^0: 2B+D=0"
"e^x\\cos x:E+2F=1"
"e^x\\sin x:-2E+F=0"
"A=1, B=0, C=-6, D=0, E=\\dfrac{1}{5}, F=\\dfrac{2}{5}"
"y_p=x^3-6xe^x+\\dfrac{1}{5}\\cos x+\\dfrac{2}{5}e^x\\sin x"
The general solution of the given nonhomogeneous equation is
Comments
Leave a comment