Question #218096


Find the general solution of the differential equation

(D^2+1)y=x^3+e^xcosx


1
Expert's answer
2021-07-19T11:05:04-0400

(D2+1)y=y+y=x3+excosx\left( {{D^2} + 1} \right)y = y'' + y = {x^3} + {e^x}\cos x

Сharacteristic equation:

k2+1=0{k^2} + 1 = 0

k2=1{k^2} = - 1

k=±ik = \pm i

Then the general solution of the homogeneous equation is

y0=C1cosx+C2sinx{y_0} = {C_1}\cos x + {C_2}\sin x

We will seek a particular solution in the form

y~=Ax3+Bx2+Cx+D+ex(Ecosx+Fsinx)\widetilde y = A{x^3} + B{x^2} + Cx + D + {e^x}\left( {E\cos x + F\sin x} \right) \Rightarrow

y~=3Ax2+2Bx+C+ex(Ecosx+Fsinx)+ex(Esinx+Fcosx)\Rightarrow {\widetilde y^\prime } = 3A{x^2} + 2Bx + C + {e^x}\left( {E\cos x + F\sin x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) \Rightarrow

y~=6Ax+2B+ex(Ecosx+Fsinx)+ex(Esinx+Fcosx)+ex(Esinx+Fcosx)+ex(EcosxFsinx)\Rightarrow {\widetilde y^{\prime \prime }} = 6Ax + 2B + {e^x}\left( {E\cos x + F\sin x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\cos x - F\sin x} \right)

Substitute the obtained values ​​into the original equation:

6Ax+2B+ex(Ecosx+Fsinx)+ex(Esinx+Fcosx)+ex(Esinx+Fcosx)+ex(EcosxFsinx)+Ax3+Bx2+Cx+D+ex(Ecosx+Fsinx)=x3+excosx6Ax + 2B + {e^x}\left( {E\cos x + F\sin x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\sin x + F\cos x} \right) + {e^x}\left( { - E\cos x - F\sin x} \right) + A{x^3} + B{x^2} + Cx + D + {e^x}\left( {E\cos x + F\sin x} \right) = {x^3} + {e^x}\cos x

Ax3+Bx2+x(6A+C)+D+2B+excosx(E+F+FE+E)+exsinx(FEEF+F)=x3+excosxA{x^3} + B{x^2} + x\left( {6A + C} \right) + D + 2B + {e^x}\cos x(E + F + F - E + E) + {e^x}\sin x(F - E - E - F + F) = {x^3} + {e^x}\cos x

{A=1B=06A+C=0D+2B=02F+E=12E+F=0A=1,B=0,C=6,D=0,F=25,E=15\left\{ \begin{matrix} A = 1\\ B = 0\\ 6A + C = 0\\ D + 2B = 0\\ 2F + E = 1\\ - 2E + F = 0 \end{matrix} \right. \Rightarrow A = 1,\,B = 0,\,C = - 6,\,D = 0,\,F = \frac{2}{5},\,E = \frac{1}{5}

So,

y~=x36x+ex(15cosx+25sinx)\widetilde y = {x^3} - 6x + {e^x}\left( {\frac{1}{5}\cos x + \frac{2}{5}\sin x} \right)

y=y0+y~=C1cosx+C2sinx+x36x+ex(15cosx+25sinx)y = {y_0} + \widetilde y = {C_1}\cos x + {C_2}\sin x + {x^3} - 6x + {e^x}\left( {\frac{1}{5}\cos x + \frac{2}{5}\sin x} \right)

Answer: y=C1cosx+C2sinx+x36x+ex(15cosx+25sinx)y = {C_1}\cos x + {C_2}\sin x + {x^3} - 6x + {e^x}\left( {\frac{1}{5}\cos x + \frac{2}{5}\sin x} \right)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS