(D2+1)y=y′′+y=x3+excosx
Сharacteristic equation:
k2+1=0
k2=−1
k=±i
Then the general solution of the homogeneous equation is
y0=C1cosx+C2sinx
We will seek a particular solution in the form
y=Ax3+Bx2+Cx+D+ex(Ecosx+Fsinx)⇒
⇒y′=3Ax2+2Bx+C+ex(Ecosx+Fsinx)+ex(−Esinx+Fcosx)⇒
⇒y′′=6Ax+2B+ex(Ecosx+Fsinx)+ex(−Esinx+Fcosx)+ex(−Esinx+Fcosx)+ex(−Ecosx−Fsinx)
Substitute the obtained values into the original equation:
6Ax+2B+ex(Ecosx+Fsinx)+ex(−Esinx+Fcosx)+ex(−Esinx+Fcosx)+ex(−Ecosx−Fsinx)+Ax3+Bx2+Cx+D+ex(Ecosx+Fsinx)=x3+excosx
Ax3+Bx2+x(6A+C)+D+2B+excosx(E+F+F−E+E)+exsinx(F−E−E−F+F)=x3+excosx
⎩⎨⎧A=1B=06A+C=0D+2B=02F+E=1−2E+F=0⇒A=1,B=0,C=−6,D=0,F=52,E=51
So,
y=x3−6x+ex(51cosx+52sinx)
y=y0+y=C1cosx+C2sinx+x3−6x+ex(51cosx+52sinx)
Answer: y=C1cosx+C2sinx+x3−6x+ex(51cosx+52sinx)
Comments