We can also solve this question by method of separation of variables . We look for particular solution on the form -
z ( x , y ) = f ( x ) g ( y ) z(x,y)=f(x)g(y) z ( x , y ) = f ( x ) g ( y )
= ( g d f d x ) ( f d g d y ) = x y ⟹ =(g\dfrac{df}{dx})(f\dfrac{dg}{dy})=xy\implies = ( g d x df ) ( f d y d g ) = x y ⟹ f d f = x d x fdf=xdx fdf = x d x ⟹ \implies ⟹ f = ± x 2 + c 1 f={\pm}\sqrt{x^{2}+c_1} f = ± x 2 + c 1
g d g = y d y gdg=ydy g d g = y d y ⟹ \implies ⟹ g = ± y 2 + c 2 g={\pm}\sqrt{y^{2}+c_2} g = ± y 2 + c 2
So the function of z will become as -
z ( x , y ) = z(x,y)= z ( x , y ) = ± {\pm} ± x 2 + c 1 y 2 + c 2 \sqrt{x^{2}+c_1}\sqrt{y^{2}+c_2} x 2 + c 1 y 2 + c 2
With condition z( x , 0 ) = x = ± ( x 2 + c 1 ) c 2 (x,0)=x={\pm}\sqrt{(x^{2}+c_1)c_2} ( x , 0 ) = x = ± ( x 2 + c 1 ) c 2 ⟹ \implies ⟹ c 1 = 0 ; c 2 = 1 ; c_1=0;c_2=1; c 1 = 0 ; c 2 = 1 ; sign of x x x
z ( x , y ) = x y 2 + 1 z(x,y)=x\sqrt{y^{2}+1} z ( x , y ) = x y 2 + 1
Solving with method of characteristics we get -
= d x q = d y p = d z 2 p q = d p y = d q x = d t 1 =\dfrac{dx}{q}=\dfrac{dy}{p}=\dfrac{dz}{2pq}=\dfrac{dp}{y}=\dfrac{dq}{x}=\dfrac{dt}{1} = q d x = p d y = 2 pq d z = y d p = x d q = 1 d t
= x 0 = s , y 0 = 0 , z 0 = s , p 0 = 1 , q 0 = 0 =x_0=s,y_0=0,z_0=s,p_0=1,q_0=0 = x 0 = s , y 0 = 0 , z 0 = s , p 0 = 1 , q 0 = 0
Solving the system leads to -
x = A e t + B e − t x=Ae^{t}+Be^{-t} x = A e t + B e − t
y = C e t + D e − t y=Ce^{t}+De^{-t} y = C e t + D e − t
p = C e 2 t − D e 2 t p=Ce^{2t}-De^{2t} p = C e 2 t − D e 2 t
q = A e 2 t − B e 2 t q=Ae^{2t}-Be^{2t} q = A e 2 t − B e 2 t
z = A C e 2 t − B D e 2 t + E z=ACe^{2t}-BDe^{2t}+E z = A C e 2 t − B D e 2 t + E
= p q − x y = 0 =pq-xy=0 = pq − x y = 0 ⟹ \implies ⟹ A B + B C = 0 AB+BC=0 A B + BC = 0
with boundary conditions ; p 0 = 1 ; q 0 = 0 p_0=1; q_0=0 p 0 = 1 ; q 0 = 0
A+ B = s ; C + D = 0 +B=s;\ C+D=0 + B = s ; C + D = 0 ; A C − B D + E = s ;AC-BD+E=s ; A C − B D + E = s ; C − D = 1 ; A − B = 0 ; A D + B C = 0 ;C-D=1;A-B=0;AD+BC=0 ; C − D = 1 ; A − B = 0 ; A D + BC = 0
A = B = E = s 2 A=B=E=\dfrac{s}{2} A = B = E = 2 s and C = − D = 1 2 ⟹ C=-D=\dfrac{1}{2}\implies C = − D = 2 1 ⟹ x = h c o s h t x=hcosht x = h cos h t
y = s i n ( h t ) y=sin(ht) y = s in ( h t )
z = s 2 ( c o s h ( 2 t ) + 1 ) = s c o s h 2 t z=\dfrac{s}{2}(cosh(2t)+1)=scosh^{2}t z = 2 s ( cos h ( 2 t ) + 1 ) = scos h 2 t
x 2 − y 2 s 2 = s ⟹ x^{2}-y^{2}s^{2}=s\implies x 2 − y 2 s 2 = s ⟹ s 2 = x 2 y 2 + 1 s^{2}=\dfrac{x^{2}}{y^{2}+1} s 2 = y 2 + 1 x 2
z = x 2 s z=\dfrac{x^{2}}{s} z = s x 2 = x 2 ( + y 2 + 1 x ) =x^{2}(\dfrac{+\sqrt{y^{2}+1}}{x}) = x 2 ( x + y 2 + 1 )
z = x y 2 + 1 z=x\sqrt{y^{2}+1} z = x y 2 + 1
Comments