Question #218186
Find the characteristics of the equation pq=xy
And determine the integral surface passes through the curve z=x , y=0
1
Expert's answer
2021-07-25T10:54:28-0400

We can also solve this question by method of separation of variables . We look for particular solution on the form -


z(x,y)=f(x)g(y)z(x,y)=f(x)g(y)


=(gdfdx)(fdgdy)=xy    =(g\dfrac{df}{dx})(f\dfrac{dg}{dy})=xy\implies fdf=xdxfdf=xdx     \implies f=±x2+c1f={\pm}\sqrt{x^{2}+c_1}

gdg=ydygdg=ydy     \implies g=±y2+c2g={\pm}\sqrt{y^{2}+c_2}



So the function of z will become as -


z(x,y)=z(x,y)= ±{\pm} x2+c1y2+c2\sqrt{x^{2}+c_1}\sqrt{y^{2}+c_2}


With condition z(x,0)=x=±(x2+c1)c2(x,0)=x={\pm}\sqrt{(x^{2}+c_1)c_2}     \implies c1=0;c2=1;c_1=0;c_2=1; sign of xx



z(x,y)=xy2+1z(x,y)=x\sqrt{y^{2}+1}


Solving with method of characteristics we get -


=dxq=dyp=dz2pq=dpy=dqx=dt1=\dfrac{dx}{q}=\dfrac{dy}{p}=\dfrac{dz}{2pq}=\dfrac{dp}{y}=\dfrac{dq}{x}=\dfrac{dt}{1}


=x0=s,y0=0,z0=s,p0=1,q0=0=x_0=s,y_0=0,z_0=s,p_0=1,q_0=0


Solving the system leads to -


x=Aet+Betx=Ae^{t}+Be^{-t}

y=Cet+Dety=Ce^{t}+De^{-t}

p=Ce2tDe2tp=Ce^{2t}-De^{2t}

q=Ae2tBe2tq=Ae^{2t}-Be^{2t}

z=ACe2tBDe2t+Ez=ACe^{2t}-BDe^{2t}+E


=pqxy=0=pq-xy=0     \implies AB+BC=0AB+BC=0


with boundary conditions ; p0=1;q0=0p_0=1; q_0=0


A+B=s; C+D=0+B=s;\ C+D=0 ;ACBD+E=s;AC-BD+E=s ;CD=1;AB=0;AD+BC=0;C-D=1;A-B=0;AD+BC=0


A=B=E=s2A=B=E=\dfrac{s}{2} and C=D=12    C=-D=\dfrac{1}{2}\implies x=hcoshtx=hcosht

y=sin(ht)y=sin(ht)

z=s2(cosh(2t)+1)=scosh2tz=\dfrac{s}{2}(cosh(2t)+1)=scosh^{2}t


x2y2s2=s    x^{2}-y^{2}s^{2}=s\implies s2=x2y2+1s^{2}=\dfrac{x^{2}}{y^{2}+1}


z=x2sz=\dfrac{x^{2}}{s} =x2(+y2+1x)=x^{2}(\dfrac{+\sqrt{y^{2}+1}}{x})


z=xy2+1z=x\sqrt{y^{2}+1}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS