Question #214927

Find the general solution of each of the following

i) (2xsiny+y3ex)dx +(x2cosy+3y2ex)dy=0

ii) (ysec2x+secxtanx)dx + (tanx+2y)dy=0

iii)(yex+2ex+y2)dx+(ex+2xy)dy=0 y(0)=6

iv)(2xcosy+3x2y)dx+(x3-x2siny-y)dy=0 y(1)=3


1
Expert's answer
2021-07-08T11:52:53-0400

i)

(2xsiny+y3ex)dx+(x2cosy+3y2ex)dy=0(2x\sin y+y^3e^x)dx +(x^2\cos y+3y^2e^x)dy=0

P=2xsiny+y3ex,Py=2xcosy+3y2exP=2x\sin y+y^3e^x, \dfrac{\partial P}{\partial y}=2x\cos y+3y^2e^x

Q=x2cosy+3y2ex,Qx=2xcosy+3y2exQ=x^2\cos y+3y^2e^x, \dfrac{\partial Q}{\partial x}=2x\cos y+3y^2e^x

Py=Qx\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}

ux=P\dfrac{\partial u}{\partial x}=P

uy=Q\dfrac{\partial u}{\partial y}=Q

u(x,y)=Pdx+φ(y)u(x,y)=\int P dx+\varphi(y)

=(2xsiny+y3ex)dx+φ(y)=\int (2x\sin y+y^3e^x)dx+\varphi(y)

=x2siny+y3ex+φ(y)=x^2\sin y+y^3e^x+\varphi(y)

uy=x2cosy+3y2ex+φ(y)\dfrac{\partial u}{\partial y}=x^2\cos y+3y^2e^x+\varphi'(y)

=x2cosy+3y2ex=Q=x^2\cos y+3y^2e^x=Q

Then φ(y)=0\varphi'(y)=0


φ(y)=C1\varphi(y)=C_1

The general solution of the equation is defined by the following implicit expression:

x2siny+y3ex=C,x^2\sin y+y^3e^x=C,

where CC is an arbitrary real number.

ii)

(ysec2x+secxtanx)dx+(tanx+2y)dy=0(y\sec^2x+\sec x\tan x)dx + (\tan x+2y)dy=0

P=ysec2x+secxtanx,Py=sec2xP=y\sec^2x+\sec x\tan x, \dfrac{\partial P}{\partial y}=\sec^2x

Q=tanx+2y,Qx=sec2xQ=\tan x+2y, \dfrac{\partial Q}{\partial x}=\sec^2x

Py=Qx\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}

ux=P\dfrac{\partial u}{\partial x}=P

uy=Q\dfrac{\partial u}{\partial y}=Q

u(x,y)=Pdx+φ(y)u(x,y)=\int P dx+\varphi(y)

=(ysec2x+secxtanx)dx+φ(y)=\int (y\sec^2x+\sec x\tan x)dx+\varphi(y)

=ytanx+secx+φ(y)=y\tan x+\sec x+\varphi(y)

uy=tanx+φ(y)\dfrac{\partial u}{\partial y}=\tan x+\varphi'(y)

=tanx+2y=Q=\tan x+2y=Q

Then φ(y)=2y\varphi'(y)=2y


φ(y)=y2+C1\varphi(y)=y^2+C_1

The general solution of the equation is defined by the following implicit expression:


ytanx+secx+y2=C,y\tan x+\sec x+y^2=C,

where CC is an arbitrary real number.


iii)

(yex+2ex+y2)dx+(ex+2xy)dy=0(ye^x+2e^x+y^2)dx+(e^x+2xy)dy=0

P=yex+2ex+y2,Py=ex+2yP=ye^x+2e^x+y^2, \dfrac{\partial P}{\partial y}=e^x+2y

Q=ex+2xy,Qx=ex+2yQ=e^x+2xy, \dfrac{\partial Q}{\partial x}=e^x+2y

Py=Qx\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}

ux=P\dfrac{\partial u}{\partial x}=P

uy=Q\dfrac{\partial u}{\partial y}=Q

u(x,y)=Pdx+φ(y)u(x,y)=\int P dx+\varphi(y)

=(yex+2ex+y2)dx+φ(y)=\int (ye^x+2e^x+y^2)dx+\varphi(y)

=yex+2ex+xy2+φ(y)=ye^x+2e^x+xy^2+\varphi(y)

uy=ex+2xy+φ(y)\dfrac{\partial u}{\partial y}=e^x+2xy+\varphi'(y)

=ex+2xy=Q=e^x+2xy=Q

Then φ(y)=0\varphi'(y)=0


φ(y)=C1\varphi(y)=C_1

The general solution of the equation is defined by the following implicit expression:


yex+2ex+xy2=C,ye^x+2e^x+xy^2=C,

where CC is an arbitrary real number.

y(0)=6y(0)=6


6e0+2e0+0(6)2=C6e^0+2e^0+0(6)^2=C

C=8C=8

The solution of the given equation is


yex+2ex+xy2=8ye^x+2e^x+xy^2=8


iv)

(2xcosy+3x2y)dx+(x3x2sinyy)dy=0(2x\cos y+3x^2y)dx+(x^3-x^2\sin y-y)dy=0

P=2xcosy+3x2y,Py=2xsiny+3x2P=2x\cos y+3x^2y, \dfrac{\partial P}{\partial y}=-2x\sin y+3x^2

Q=x3x2sinyy,Qx=3x22xsinyQ=x^3-x^2\sin y-y, \dfrac{\partial Q}{\partial x}=3x^2-2x\sin y

Py=Qx\dfrac{\partial P}{\partial y}=\dfrac{\partial Q}{\partial x}

ux=P\dfrac{\partial u}{\partial x}=P

uy=Q\dfrac{\partial u}{\partial y}=Q

u(x,y)=Pdx+φ(y)u(x,y)=\int P dx+\varphi(y)

=(2xcosy+3x2y)dx+φ(y)=\int (2x\cos y+3x^2y)dx+\varphi(y)

=x2cosy+x3y+φ(y)=x^2\cos y+x^3y+\varphi(y)

uy=x2siny+x3+φ(y)\dfrac{\partial u}{\partial y}=-x^2\sin y+x^3+\varphi'(y)

=x3x2sinyy=Q=x^3-x^2\sin y-y=Q

Then φ(y)=y\varphi'(y)=-y


φ(y)=12y2+C1\varphi(y)=-\dfrac{1}{2}y^2+C_1

The general solution of the equation is defined by the following implicit expression:


2xcosy+3x2y12y2=C,2x\cos y+3x^2y-\dfrac{1}{2}y^2=C,

where CC is an arbitrary real number.

y(1)=3y(1)=3


2(1)cos3+3(1)2(3)12(3)2=C2(1)\cos 3+3(1)^2(3)-\dfrac{1}{2}(3)^2=C

C=2cos3+4.5C=2\cos3+4.5

The solution of the given equation is


2xcosy+3x2y12y2=2cos3+4.52x\cos y+3x^2y-\dfrac{1}{2}y^2=2\cos3+4.5

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS