i)
(2xsiny+y3ex)dx+(x2cosy+3y2ex)dy=0
P=2xsiny+y3ex,∂y∂P=2xcosy+3y2ex
Q=x2cosy+3y2ex,∂x∂Q=2xcosy+3y2ex
∂y∂P=∂x∂Q
∂x∂u=P
∂y∂u=Q
u(x,y)=∫Pdx+φ(y)
=∫(2xsiny+y3ex)dx+φ(y)
=x2siny+y3ex+φ(y)
∂y∂u=x2cosy+3y2ex+φ′(y)
=x2cosy+3y2ex=Q Then φ′(y)=0
φ(y)=C1The general solution of the equation is defined by the following implicit expression:
x2siny+y3ex=C, where C is an arbitrary real number.
ii)
(ysec2x+secxtanx)dx+(tanx+2y)dy=0
P=ysec2x+secxtanx,∂y∂P=sec2x
Q=tanx+2y,∂x∂Q=sec2x
∂y∂P=∂x∂Q
∂x∂u=P
∂y∂u=Q
u(x,y)=∫Pdx+φ(y)
=∫(ysec2x+secxtanx)dx+φ(y)
=ytanx+secx+φ(y)
∂y∂u=tanx+φ′(y)
=tanx+2y=Q Then φ′(y)=2y
φ(y)=y2+C1The general solution of the equation is defined by the following implicit expression:
ytanx+secx+y2=C, where C is an arbitrary real number.
iii)
(yex+2ex+y2)dx+(ex+2xy)dy=0
P=yex+2ex+y2,∂y∂P=ex+2y
Q=ex+2xy,∂x∂Q=ex+2y
∂y∂P=∂x∂Q
∂x∂u=P
∂y∂u=Q
u(x,y)=∫Pdx+φ(y)
=∫(yex+2ex+y2)dx+φ(y)
=yex+2ex+xy2+φ(y)
∂y∂u=ex+2xy+φ′(y)
=ex+2xy=Q Then φ′(y)=0
φ(y)=C1The general solution of the equation is defined by the following implicit expression:
yex+2ex+xy2=C,where C is an arbitrary real number.
y(0)=6
6e0+2e0+0(6)2=C
C=8 The solution of the given equation is
yex+2ex+xy2=8
iv)
(2xcosy+3x2y)dx+(x3−x2siny−y)dy=0
P=2xcosy+3x2y,∂y∂P=−2xsiny+3x2
Q=x3−x2siny−y,∂x∂Q=3x2−2xsiny
∂y∂P=∂x∂Q
∂x∂u=P
∂y∂u=Q
u(x,y)=∫Pdx+φ(y)
=∫(2xcosy+3x2y)dx+φ(y)
=x2cosy+x3y+φ(y)
∂y∂u=−x2siny+x3+φ′(y)
=x3−x2siny−y=Q Then φ′(y)=−y
φ(y)=−21y2+C1The general solution of the equation is defined by the following implicit expression:
2xcosy+3x2y−21y2=C,where C is an arbitrary real number.
y(1)=3
2(1)cos3+3(1)2(3)−21(3)2=C
C=2cos3+4.5 The solution of the given equation is
2xcosy+3x2y−21y2=2cos3+4.5
Comments