Answer to Question #214053 in Differential Equations for jen

Question #214053

Find the general solutions of the following equations.

LINEAR DE


  1. dx/dy - 4x/y = y5
  2. dy/dx + y/x = cos x + (sinx/x)
  3. dx/dy + x(2-y)/y = 1/y


BERNOULLI'S EQUATION

  1. dy/dx - 3y/2x = y3/2x3
  2. dy/dx - y/2x = -x2/y
  3. dy/dx+ y = 2xy2ex
1
Expert's answer
2021-07-06T16:48:49-0400

Solution.

All equations will be done by the method of variation of a constant.

1.1


"\\frac{dx}{dy}-\\frac{4x}{y}=y^5"

1) "\\frac{dx}{dy}-\\frac{4x}{y}=0"

"\\frac{dx}{x}=\\frac{4dy}{y}"

"\\int\\frac{dx}{x}=\\int\\frac{4dy}{y}"

"x=Cy^4,"

where C is some constant.

2) Let be "x=C(y)y^4,"

then"x'=C'(y)y^4+4C(y)y^3."

We will have

"C'y^4+4Cy^3-\\frac{4}{y}Cy^4=y^5."

From here "C'(y)=y."

So, "C(y)=\\frac{y^2}{2}."

And, "x=\\frac{y^2}{2}y^4=\\frac{y^6}{2}."

3)

"x=Cy^4+\\frac{y^6}{2}."


1.2


"\\frac{dy}{dx}+\\frac{y}{x}=\\cos{x}+\\frac{\\sin{x}}{x}"

1) "\\frac{dy}{dx}+\\frac{y}{x}=0"

"\\frac{dy}{y}=-\\frac{dx}{x}"

"\\int\\frac{dy}{y}=-\\int\\frac{dx}{x}"

"yx=C"

"y=\\frac{C}{x},"

where C is some constant.

2) Let be "y=\\frac{C(x)}{x},"

then "y'=\\frac{C'(x)x-C(x)}{x^2}."

We will have

"\\frac{C'x-C}{x^2}+\\frac{C}{x^2}=\\cos{x}+\\frac{\\sin{x}}{x}"

From here "C'(x)=x\\cos{x}+\\sin{x}."

So, "C(x)=x\\sin{x}."

And, "y=\\frac{x\\sin{x}}{x}=\\sin{x}."

3)

"y=\\frac{C}{x}+\\sin{x}."


1.3


"\\frac{dx}{dy}+\\frac{x(2-y)}{y}=\\frac{1}{y}"

1) "\\frac{dx}{dy}+\\frac{x(2-y)}{y}=0"

"\\frac{dx}{x}=-\\frac{2-y}{y}dy"

"\\int\\frac{dx}{x}=-\\int\\frac{2-y}{y}dy"

"x=\\frac{Ce^y}{y^2},"

where C is some constant.

2) Let be "x=\\frac{C(y)e^y}{y^2},"

then"x'=\\frac{(C'(y)e^y+C(y)e^y)y^2-C(y)e^y2y}{y^4}."

We will have

"\\frac{(C'(y)e^y+C(y)e^y)y^2-C(y)e^y2y}{y^4}+\\frac{C(y)e^y}{y^2}\\frac{2-y}{y}=\\frac{1}{y}."

From here "C'(y)=\\frac{y}{e^y}."

So, "C(y)=-\\frac{y+1}{e^y}."

And, "x=-\\frac{y+1}{y^2}."

3)

"x=C\\frac{e^y}{y^2}-\\frac{y+1}{y^2}.""2.1. \\frac{dy}{dx}-\\frac{3y}{2x}=\\frac{y^3}{2x^3}"

Divide both parts of equation by "y^3."


"\\frac{y'}{y^3}-\\frac{3}{2xy^2}=\\frac{1}{2x^3}"

Substitution "z=\\frac{1}{y^2}."

Then "z'+\\frac{3z}{x}=-\\frac{1}{x^3}."

1) "\\frac{dz}{dx}+\\frac{3z}{x}=0"

"\\frac{dz}{dx}=-\\frac{3z}{x}"

"\\int\\frac{dz}{dx}=-\\int\\frac{3z}{x}"

"z=\\frac{C}{x^3},"

where C is some constant.

2) Let be "z=\\frac{C(x)}{x^3},"

then "z'=\\frac{C'(x)x^3-3x^2C(x)}{x^6}."

We will have

"\\frac{C'}{x^3}-\\frac{3C}{x^4}+\\frac{3C}{x^4}=-\\frac{1}{x^3}"

From here "C'(x)=-1."

So, "C(x)=-x."

And, "z=-\\frac{1}{x^2}."

3)

"z=\\frac{C}{x^3}-\\frac{1}{x^2}."


From here


"y=\\pm \\sqrt{\\frac{x^3}{C-x}}."


2.2


"\\frac{dy}{dx}-\\frac{y}{2x}=-\\frac{x^2}{y}"

Divide both parts of equation by "y^{-1}" .


"\\frac{y'}{y^{-1}}-\\frac{y^2}{2x}=-x^2"

Substitution "z={y^2}."

Then "z'-\\frac{z}{x}=-2{x^2}."

1) "\\frac{dz}{dx}-\\frac{z}{x}=0"

"\\frac{dz}{z}=\\frac{dx}{x}"

"\\int\\frac{dz}{dx}=-\\int\\frac{3z}{x}"

"z={C}{x},"

where C is some constant.

2) Let be "z={C(x)}{x},"

then "z'=C'(x)x+C(x)."

We will have

"{C'}{x}+C-\\frac{Cx}{x}=-2x^2."

From here "C'(x)=-2x."

So, "C(x)=-x^2."

And, "z=-{x^3}."

3)

"z={C}{x}-{x^3}."


From here


"y=\\pm \\sqrt{{Cx}-{x^3}}."


2.3


"\\frac{dy}{dx}+y=2xy^2e^x"

Divide both parts of equation by "y^2."


"\\frac{y'}{y^2}+\\frac{1}{y}={2xe^x}"

Substitution "z=\\frac{1}{y}."

Then "z'-{z}=-2xe^x."

1) "\\frac{dz}{dx}-z=0"

"\\frac{dz}{z}=dx"

"\\int\\frac{dz}{z}=\\int{dx}"

"z={C}{e^x},"

where C is some constant.

2) Let be "z={C(x)}{e^x},"

then "z'={C'(x)e^x+C(x)}{e^x}."

We will have

"{C'}{e^x}+{C}{e^x}-{C}{e^x}=-2xe^x"

From here "C'(x)=-2x."

So, "C(x)=-x^2."

And, "z=-{x^2}e^x."

3)

"{C}{e^x}-{x^2}e^x."


From here


"y= \\frac{e^{-x}}{C-x^2}."

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog