Solve the equations by the use of the operator D
D²y -6Dy +9y= e^3x + e^-3x
"D^2y-6Dy+9y=e^{3x}+e^{-3x}"
For yn
"(D^2-6D+9)y=0\\\\m^2-6m+9=0"
"\\implies(m-3)^2=0\\\\\\implies m=3,3"
"\\\\yn=\\frac{1}{D^2-6D+9}(e^{3x}+e^{-3x})"
"\\\\=\\frac{e^{3x}}{D^2-6D+9}+\\frac{e^{-3x}}{D^2-6D+9}"
"=\\frac{xe^{3x}}{2D-6}+\\frac{e^{-3x}}{36}"
So solution is "y(x)=y_n+y_p"
"\\implies y(x)=ae^{3x}+c_2xe^{3x}+\\frac{x^2e^{3x}}{2}+\\frac{e^{-3x}}{36}"
Comments
Leave a comment