1.sketch the gradient field for the differential equation dy/dt=t-y2 for t=-1......,1
y=-1,.......,1
2.The yield y(t) (in bushes)per acre of a corn crop satisfies the equation dy/dt+y=100+e-t
if y(0)=0 find y at any time t
Part 1
Part 2
"y'+f(x)y=g(x)" as "I(x) = e^{\\int f(x)dx}\\\\"
Given that the yield y(t) of a corn crop satisfies the equation "\\frac{dy}{dt}=100+e^{-t}-y"
"\\frac{dy}{dt}=100+e^{-t}-y\\\\\n\\frac{dy}{dt}+y=100+e^{-t}\\\\"
Calculating the integrating factor
"I(t) = e^{\\int f(t)dt} = e^t"
Multiplying both sides
"e^t\\frac{dy}{dt}+ye^t=100e^{-t}+1\\\\\n(e^ty)'=100e^t+1\\\\\n\\int(e^ty)'dt=\\int(100e^t+1)\\\\\ne^ty=\\int100e^tdt+\\int1dt\\\\\ne^ty=100e^t+t+C\\\\\ny= 100+te^{-t}+Ce^{-t}\\\\\n0= 100+0*e^{0}+Ce^{0}\\\\\nC=-100\\\\\ny= 100+te^{-t}-100e^{-t}\\\\"
Comments
Leave a comment