Question #213339

1.d2y/dx2-2dy/dx+5y=extan2x

2.dy/dx+3y=3x2e-3x



1
Expert's answer
2021-07-05T14:39:53-0400

1.d2ydx22dydx+5y=extan2x{d^2y\over dx^2}-2{dy\over dx}+5y=e^xtan2x

The differential equation has the form

d2ydx2+pdydx+qy=s{d^2y\over dx^2}+p{dy\over dx}+qy=s where p=2p=-2 , q=5q=5 and s=extan2xs=-e^xtan2x

Solve corresponding homogenous linear equation

d2ydx2+pdydx+qy=0{d^2y\over dx^2}+p{dy\over dx}+qy=0

Its characteristic equation is given as

q+(k2+kp)=0    5+(k22k)=0    k22k+5=0q+(k^2+kp)=0\implies5+(k^2-2k)=0 \implies k^2-2k+5=0

\therefore k1=12ik_1=1-2i and k2=1+2ik_2=1+2i

    \implies y=C1ek1x+C2ek2x=C1e(12i)x+C2e(1+2i)xy=C_1e^{k_1x}+C_2e^{k_2x}=C_1e^{(1-2i)x}+C_2e^{(1+2i)x}

Solve the inhomogeneous equation

d2ydx2+pdydx+qy=s{d^2y\over dx^2}+p{dy\over dx}+qy=s

By use of variation of parameters method, suppose that C1C_1 and C2C_2 are functions of xx

\therefore The general solution is

y=C1(x)e(12i)x+C2(x)e(1+2i)xy=C_1(x)e^{(1-2i)x}+C_2(x)e^{(1+2i)x}

To find C1(x)C_1(x) and C2(x)C_2 (x) ,by the method of variation of parameters ,we find the solution from the system:

y1(x)ddxC1(x)+y2(x)ddxC2(x)=0y_1(x){d\over dx}C_1(x)+y_2(x){d\over dx}C_2(x)=0


ddxC1(x)ddxy1(x)+ddxC2(x)ddxy2(x)=f(x){d\over dx}C_1(x){d\over dx}y_1(x)+{d\over dx}C_2(x){d\over dx}y_2(x)=f(x)


Where y1(x)y_1(x) and y2(x)y_2(x) are linearly independent particular solutions of linear ordinary differential Equations

y1(x)=ex(12i)y_1(x)=e^{x(1-2i)} , C1=1C_1=1 and C2=0C_2=0


y2(x)=ex(1+2i)y_2(x)=e^{x(1+2i)} , C1=0C_1=0 and C2=1C_2=1

And the free term is given as

f(x)=extan(2x)f(x)=e^xtan(2x)

So the system has the form:

ex(12i)ddxC1(x)+ex(1+2i)ddxC2(x)=0e^{x(1-2i)}{d\over dx}C_1(x)+e^{x(1+2i)}{d\over dx}C_2(x)=0


ddxC1(x)ddxex(12i)+ddxC2(x)ddxex(1+2i)=extan(2x){d\over dx}C_1(x){d\over dx}e^{x(1-2i)}+{d\over dx}C_2(x){d\over dx}e^{x(1+2i)}=e^xtan(2x)


solving the system gives

ddxC1(x)=ie2ixtan(2x)4    C1(x)=ie2ixtan(2x)4dx{d\over dx}C_1(x)={ie^{2ixtan(2x)}\over 4} \implies C_1(x)=\int{ie^{2ixtan(2x)}\over 4}dx


ddxC2(x)=ie2ixtan(2x)4    C2(x)=ie2ixtan(2x)4dx{d\over dx}C_2(x)={ie^{-2ixtan(2x)}\over 4}\implies C_2(x)=-\int {ie^{-2ixtan(2x)}\over 4}dx

Evaluate ie2ixtan(2x)4dx=log(e2ixi)8log(e2ix+i)8ie2ix8\int{ie^{2ixtan(2x)}\over 4}dx={log(e^{2ix}-i)\over 8}-{log(e^{2ix}+i)\over 8}-{ie^{2ix}\over 8}


ie2ixtan(2x)4dx=log(e2ixi)8log(e2ix+i)8+ie2ix8-\int{ie^{-2ixtan(2x)}\over 4}dx={log(e^{2ix}-i)\over 8}-{log(e^{2ix}+i)\over 8}+{ie^{2ix}\over 8}

Substitute C1(x)C_1(x) and C2(x)C_2(x) to


y=C1(x)e(12i)x+C2(x)e(1+2i)xy=C_1(x)e^{(1-2i)x}+C_2(x)e^{(1+2i)x}


    y=(log(e2ixi)8log(e2ix+i)8ie2ix8)e(12i)x+(log(e2ixi)8log(e2ix+i)8+ie2ix8)e(1+2i)x\implies y=({log(e^{2ix}-i)\over 8}-{log(e^{2ix}+i)\over 8}-{ie^{2ix}\over 8})e^{(1-2i)x}+({log(e^{2ix}-i)\over 8}-{log(e^{2ix}+i)\over 8}+{ie^{2ix}\over 8})e^{(1+2i)x}


y=(C2sin(2x)+(C1+log(sin(2x)1)8log(sin(2x)+1)8)cos(2x)ex\therefore y=(C_2sin(2x)+(C_1+{log(sin(2x)-1)\over 8}-{log(sin(2x)+1)\over 8})cos(2x)e^x


2.dydx+3y=3x2e3x{dy\over dx}+3y=3x^2e^{-3x}

This differential equation has the form

dydx+p(x)y=Q(x){dy\over dx}+p(x)y=Q(x) ​​

Solve the correspondent linear homogenous equation

dydx+p(x)y=0{dy\over dx}+p(x)y=0 where p(x)=3p(x)=3 and Q(x)=3x2e3xQ(x)=3x^2e^{-3x}

    dydx=p(x)y    dyy=p(x)dx    1ydy=p(x)dx\implies {dy\over dx}=-p(x)y \implies {dy\over y}=-p(x)dx \implies \int{1\over y}dy =-\int p(x)dx

log(y)=p(x)dx    y=ep(x)dx\therefore log(|y|)=-\int p(x)dx \implies |y|=e^{-\int p(x)dx}

    y1=ep(x)dx=e3dx=eC13x\implies y_1=e^{-\int p(x)dx}=e^{-\int 3dx}=e^{C_1-3x}

and y2=ep(x)dx=e3dx=eC23xy_2=-e^{-\int p(x)dx}=-e^{-\int 3dx}=-e^{C_2-3x}

This leads to correspondent solution for any constant C not equal to zero

y=Ce3xy=Ce^{-3x}

Now we should solve the inhomogeneous equation

dydx+p(x)y=Q(x){dy\over dx}+p(x)y=Q(x)

Use variation of parameters method by considering C as a function of x

y=C(x)e3xy=C(x)e^{-3x}

Apply it in the original equation using rules for product differentiation of composite functions derivative .We find that

ddxC(x)=Q(x)ep(x)dx{d\over dx}C(x)=Q(x)e^{\int p(x)dx}

Let use Q(x) and p(x) for this equation, we get the first order differential equation for C(x)

ddxC(x)=3x3    C(x)=3x2dx=x3+c{d\over dx}C(x)=3x^3 \implies C(x)=\int3x^2dx=x^3+c

use C(x) at

y=C(x)e3xy=C(x)e^{-3x}

\therefore y=(C1+x3)e3xy=(C_1+x^3)e^{-3x}






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS