Question #214140


A string is stretched and fastened to two points at a distance 0

l

0 apart. Motion is started by

displacing the string in the form y = k sin πx

l

from which it is released at time t = 0. Show

that the displacement of any point on the string at a distance x from one end at time t is

given by k sin πx

l

cos πax

l


1
Expert's answer
2021-07-07T16:14:46-0400

The equation of string is given by -


2yt2=a22yx2\dfrac{\partial^{2}y}{\partial t^{2}}=a^{2}\dfrac{\partial^{2}y}{\partial x^{2}} .................................1).................................1)

Sine the string is stretched between the two points (0,0) and (l,0)(l,0) , hence the displacement of the string at these point will be zero .


y(0,t)=0............................................2)\therefore y(0,t)=0............................................2)


and y(l,t)=0...............................................3)and \ y(l,t)=0...............................................3)


since the string is released from rest hence its initial velocity will be zero .



yt=0 at t=0.....................................................4)\therefore \dfrac{\partial y}{\partial t}=0\ at\ t=0 .....................................................4)


since , the string is displaced from the initial position at time t=0 hence the initial displacement is given is


y(x,0)=Ksinπxl...........................................5)y(x,0)=Ksin{\dfrac{\pi x}{l}}...........................................5)



conditions (2), (3),(4),(5) are the boundary conditions


Let us now proceed to solve equation (1),


Let y=XT...............................................6)y=XT...............................................6)



where X is a function of x onlyx\ only and T is a function of t only .


yt=(XT)t=XdTdt\dfrac{\partial y}{\partial t}=\dfrac{\partial (XT)}{\partial t}=X\dfrac{dT}{dt}



2yt2=(XdTdt)t=Xd2Tdt2\dfrac{\partial^{2} y}{\partial t^{2}}=\dfrac{\partial(X\dfrac{dT}{dt})}{\partial t}=X\dfrac{d^{2}T}{dt^{2}}



similarly, 2yt2=Td2Xdx2\dfrac{\partial^{2} y}{\partial t^{2}}=T\dfrac{d^{2}X}{dx^{2}}



substituting the above in equation (1) , we get



Xd2Tdt2=a2Td2Xdx2X\dfrac{d^{2}T}{dt^{2}}=a^{2}T\dfrac{d^{2}X}{dx^{2}}     \implies XT=a2TXXT^{''}=a^{2}TX^{''}


Now making some cases , we get ,



Case 1)1a2TT=XX=P2Case \ 1)\dfrac{1}{a^{2}}\dfrac{T^{''}}{T}=\dfrac{X^{''}}{X}=-P^{2}



i)i) 1a2TT=p2\dfrac{1}{a^{2}}\dfrac{T^{''}}{T}=-p^{2}


d2Tdt2+a2p2T=0\dfrac{d^{2}T}{dt^{2}}+a^{2}p^{2}T=0



Auxiliary equation is given by -


m2+c2p2=0m^{2}+c^{2}p^{2}=0


m=m= ±api{\pm}api



CF=c1cosapt+c2sincpt\therefore CF=c_1cosapt+c_2sincpt


PI=0PI=0


CF=c1cos apt+c2sin apt\therefore CF=c_1cos\ apt+c_2 sin \ {apt}


T=CF+PIT=CF+PI


=c1cos apt+c2sin apt.....................................7)=c_1cos\ apt+c_2 sin \ {apt}.....................................7)


ii)ii) XX=p2\dfrac{X''}{X}=-p^{2}     \implies d2Xdx2+p2X=0\dfrac{d^{2}X}{dx^{2}}+p^{2}X=0


XX=p2\dfrac{X''}{X}=-p^{2}


Auxiliary equation is -


m2+p2=0m^{2}+p^{2}=0


m=±pim={\pm}pi


C.F=c3cos(px)+c4sin(px)\therefore C.F=c_{3}cos(px)+c_4sin(px) =X..............................(8)=X..............................(8)



hence , y(x,t)=y(x,t)= (c1cos apt+c2sin apt)(c3cos(px)+c4sin(px))................................9)(c_1cos\ apt+c_2 sin \ {apt})(c_{3}cos(px)+c_4sin(px))................................9)



Case 2)1a2TT=XX=p2Case \ 2)\dfrac{1}{a^{2}}\dfrac{T^{''}}{T}=\dfrac{X^{''}}{X}=p^{2}



i)i) 1a2TT=p2     d2Tdt2a2p2T=0\dfrac{1}{a^{2}}\dfrac{T^{''}}{T}=p^{2}\implies\ \dfrac{d^{2}T}{dt^{2}}-a^{2}p^{2}T=0



Auxiliary equation is - m2p2a2=0     m=±pam^{2}-p^{2}a^{2}=0\implies\ m={\pm}pa


\therefore CF=c5eapt+c6eaptCF=c_5e^{apt}+c_6e^{-apt}

PI=0PI=0


\therefore T=c5eapt+c6eaptT=c_5e^{apt}+c_6e^{-apt}



ii)ii) XX=p2\dfrac{X''}{X}=p^{2}


d2Xdx2p2X=0\dfrac{d^{2}X}{dx^{2}}-p^{2}X=0


Auxiliary equation is -


m2p2=0    m=±pm^{2}-p^{2}=0\implies m={\pm}p



CF=c7epx+c8epx\therefore CF=c_{7}e^{px}+c_8e^{-px}



PI=0PI=0


\therefore X=X= c7epx+c8epxc_{7}e^{px}+c_8e^{-px}



hence , y(x,t)=(c5cosepat+c6ecpt)(c7epx+c8epx)...................10)y(x,t)=(c_5cose^{pat}+c_6e^{-cpt})(c_7e^{px}+c_8e^{-px})...................10)



Case III)1a2TT=XX=0(say)Case\ III) \dfrac{1}{a^{2}}\dfrac{T^{''}}{T}=\dfrac{X^{''}}{X}=0(say)



(i)(i) 1a2TT=0    T=0\dfrac{1}{a^{2}}\dfrac{T^{''}}{T}=0\implies T^{''}=0 or d2Tdt2=0\dfrac{d^{2}T}{dt^{2}}=0



Auxiliary equation is

m2=0    m=0,0m^{2}=0\implies m=0,0


C.F=c9+c10t\therefore C.F=c_9+c_{10}t


PI=0PI=0



\therefore T=c9+c10tT=c_9+c_{10}t



ii)ii) XX=0(say)    \dfrac{X^{''}}{X}=0(say)\implies d2Xdx2=0\dfrac{d^{2}X}{dx^{2}}=0



Auxiliary equation is -


m2=0    m=0,0m^{2}=0\implies m=0,0


\therefore CF=c11+c12xCF=c_{11}+c_{12}x


PI=0PI=0


\therefore X=X= c11+c12xc_{11}+c_{12}x



hence , y(x,t)=(c9+c10x)(c11+c12x)........................................................11)y(x,t)=(c_9+c_{10}x)(c_{11}+c_{12}x)........................................................11)


Out of these three above solutions (9),(10)and (11), we have to choose the solution which is consistent with the physical nature of the problem . since we are dealing with problem on vibrations , the solution must contain periodic solution . hence the solutions which contains trignometric terms must be the solutions of given equations .



hence , solution (9) is the general solution of one -dimension wave equation given by the equation (1),


now,y(x,t)=(c1cos apt+c2sin apt)(c3cos px+c4sin px)now , y(x,t)=(c_1cos\ {apt}+c_{2}sin\ {apt})(c_3cos\ px+c_4sin \ px)


Applying the boundary condition ,


y(0,t)=0=y(0,t)=0= (c1cos apt+c2sin apt)c3(c_1cos\ {apt}+c_{2}sin\ {apt})c_{3}



    \implies c3=0c_{3}=0


\therefore from (9),from \ (9), y(x,t)=(c1cos apt+c2sin apt)c4sin pxy(x,t)=(c_1cos\ {apt}+c_{2}sin\ {apt})c_{4}sin\ px



again , now using the boundary conditions ,



y(x,t)=0=(c1cos apt+c2sin apt)c4sin ply(x,t)=0=(c_1cos\ {apt}+c_{2}sin\ {apt})c_{4}sin\ pl




    \implies sinpl=0=sinnπ(nI)sinpl=0=sin{n{\pi}}(n\isin I)



\therefore p=nπlp=\dfrac{n{\pi}}{l}



hence from (12), y(x,t)=(c1cosnπatl+c2sinnπatl)y(x,t)=(c_1cos\dfrac{n{\pi}at}{l}+c_2sin\dfrac{n{\pi}at}{l})c4sinnπxlc_{4}sin{\dfrac{n{\pi}x}{l}}


now \ (yt)t=0=nπal[c1sinnπatl+c2sinnπatl]c4sinnπxl(\dfrac{\partial y}{\partial t})_{t=0}=\dfrac{n{\pi}a}{l}[-c_{1}sin\dfrac{n{\pi}at}{l}+c_{2}sin\dfrac{n{\pi}at}{l}]c_4sin\dfrac{n{\pi}x}{l}



now again using boundary conditions ,


At t=0 ,


(yt)t=0=0=nπcl[c2c4sinnπxl](\dfrac{\partial y}{\partial t})_{t=0}=0=\dfrac{n{\pi}c}{l}[c_2c_4sin\dfrac{n{\pi}x}{l}]



    \implies c2=0c_{2}=0




\therefore from(13), y(x,t)=c1c4cosnπatlsinnπxlfrom (13), \ y(x,t)=c_1c_4cos\dfrac{n{\pi}at}{l}sin\dfrac{n{\pi}x}{l}



y(x,0)=ksinπxl=c1c4sinnπxly(x,0)=ksin\dfrac{{\pi}x}{l}=c_1c_4sin\dfrac{n{\pi}x}{l}



where c1c4=k,n=1c_{1}c_{4}=k, n=1


hence from (14), y(x,t)=kcosπaxlsinπxly(x,t)=kcos\dfrac{{\pi}ax}{l}sin\dfrac{{\pi}x}{l} which is required solution .



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS