The equation of string is given by -
∂t2∂2y=a2∂x2∂2y .................................1)
Sine the string is stretched between the two points (0,0) and (l,0) , hence the displacement of the string at these point will be zero .
∴y(0,t)=0............................................2)
and y(l,t)=0...............................................3)
since the string is released from rest hence its initial velocity will be zero .
∴∂t∂y=0 at t=0.....................................................4)
since , the string is displaced from the initial position at time t=0 hence the initial displacement is given is
y(x,0)=Ksinlπx...........................................5)
conditions (2), (3),(4),(5) are the boundary conditions
Let us now proceed to solve equation (1),
Let y=XT...............................................6)
where X is a function of x only and T is a function of t only .
∂t∂y=∂t∂(XT)=XdtdT
∂t2∂2y=∂t∂(XdtdT)=Xdt2d2T
similarly, ∂t2∂2y=Tdx2d2X
substituting the above in equation (1) , we get
Xdt2d2T=a2Tdx2d2X ⟹ XT′′=a2TX′′
Now making some cases , we get ,
Case 1)a21TT′′=XX′′=−P2
i) a21TT′′=−p2
dt2d2T+a2p2T=0
Auxiliary equation is given by -
m2+c2p2=0
m= ±api
∴CF=c1cosapt+c2sincpt
PI=0
∴CF=c1cos apt+c2sin apt
T=CF+PI
=c1cos apt+c2sin apt.....................................7)
ii) XX′′=−p2 ⟹ dx2d2X+p2X=0
XX′′=−p2
Auxiliary equation is -
m2+p2=0
m=±pi
∴C.F=c3cos(px)+c4sin(px) =X..............................(8)
hence , y(x,t)= (c1cos apt+c2sin apt)(c3cos(px)+c4sin(px))................................9)
Case 2)a21TT′′=XX′′=p2
i) a21TT′′=p2⟹ dt2d2T−a2p2T=0
Auxiliary equation is - m2−p2a2=0⟹ m=±pa
∴ CF=c5eapt+c6e−apt
PI=0
∴ T=c5eapt+c6e−apt
ii) XX′′=p2
dx2d2X−p2X=0
Auxiliary equation is -
m2−p2=0⟹m=±p
∴CF=c7epx+c8e−px
PI=0
∴ X= c7epx+c8e−px
hence , y(x,t)=(c5cosepat+c6e−cpt)(c7epx+c8e−px)...................10)
Case III)a21TT′′=XX′′=0(say)
(i) a21TT′′=0⟹T′′=0 or dt2d2T=0
Auxiliary equation is
m2=0⟹m=0,0
∴C.F=c9+c10t
PI=0
∴ T=c9+c10t
ii) XX′′=0(say)⟹ dx2d2X=0
Auxiliary equation is -
m2=0⟹m=0,0
∴ CF=c11+c12x
PI=0
∴ X= c11+c12x
hence , y(x,t)=(c9+c10x)(c11+c12x)........................................................11)
Out of these three above solutions (9),(10)and (11), we have to choose the solution which is consistent with the physical nature of the problem . since we are dealing with problem on vibrations , the solution must contain periodic solution . hence the solutions which contains trignometric terms must be the solutions of given equations .
hence , solution (9) is the general solution of one -dimension wave equation given by the equation (1),
now,y(x,t)=(c1cos apt+c2sin apt)(c3cos px+c4sin px)
Applying the boundary condition ,
y(0,t)=0= (c1cos apt+c2sin apt)c3
⟹ c3=0
∴ from (9), y(x,t)=(c1cos apt+c2sin apt)c4sin px
again , now using the boundary conditions ,
y(x,t)=0=(c1cos apt+c2sin apt)c4sin pl
⟹ sinpl=0=sinnπ(n∈I)
∴ p=lnπ
hence from (12), y(x,t)=(c1coslnπat+c2sinlnπat)c4sinlnπx
now \ (∂t∂y)t=0=lnπa[−c1sinlnπat+c2sinlnπat]c4sinlnπx
now again using boundary conditions ,
At t=0 ,
(∂t∂y)t=0=0=lnπc[c2c4sinlnπx]
⟹ c2=0
∴ from(13), y(x,t)=c1c4coslnπatsinlnπx
y(x,0)=ksinlπx=c1c4sinlnπx
where c1c4=k,n=1
hence from (14), y(x,t)=kcoslπaxsinlπx which is required solution .
Comments