Solve the ordinary dierential equation
y'' + 2y' + 5y = 4e-x + 17 sin 2x:
Given the differential equation
We can rewrite the equation as
The general solution will be the sum of the complementary solution and particular solution. We thus find the complementary solution by solving
Assume a solution will be proportional to "e^{\\lambda x}" for some constant "\\lambda."
Substitute "y(x)=e^{\\lambda x}" into the differential equation:
Substitute:
Factor out "e^{\\lambda x} :"
Since "e^{\\lambda x} \\neq 0" for any finite "\\lambda" , the zeros must come from the polynomial:
Solve for "\\lambda" :
"\\text{The roots } \\lambda=-1 \\pm 2 i \\text{ give } y_{1}(x)=c_{1} e^{(-1+2 i) x}, y_{2}(x)=c_{2} e^{(-1-2 i) x} \\text{ as solutions, }\\\\\n\\text{ where } c_{1} \\text{ and } c_{2} \\text{ are arbitrary constants. }\n\\text{ }\\\\\n\\text{The general solution is the sum of the above solutions: }\\\\\ny(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{(-1+2 i) x}+c_{2} e^{(-1-2 i) x}\n\\text{Apply Euler's identity } e^{\\alpha+i \\beta}=e^{\\alpha} \\cos (\\beta)+i e^{\\alpha} \\sin (\\beta):\\\\\ny(x)=c_{1}\\left(e^{-x} \\cos (2 x)+i e^{-x} \\sin (2 x)\\right)+c_{2}\\left(e^{-x} \\cos (2 x)-i e^{-x} \\sin (2 x)\\right)\\\\\n\\text{ }\\\\\n\\text{Regroup terms:}\\\\\ny(x)=\\left(c_{1}+c_{2}\\right) e^{-x} \\cos (2 x)+i\\left(c_{1}-c_{2}\\right) e^{-x} \\sin (2 x)\\\\\n\\text{Redefine } c_{1}+c_{2} \\text{ as } c_{1} \\text{ and } i\\left(c_{1}-c_{2}\\right) \\text{ as } c_{2}, \\text{ since these are arbitrary constants: }\\\\\ny(x)=c_{1} e^{-x} \\cos (2 x)+c_{2} e^{-x} \\sin (2 x)\\\\\n\\text{}\\\\\n\\text{Determine the particular solution to } \\frac{d^{2} y(0)}{d x^{2}}+2 \\frac{d y(x)}{d x}+5 y(x)=4 e^{-x}+17 \\sin (2 x)\\\\\n\\text{by the method of undetermined coefficients: }"
The particular solution will be the sum of the particular solutions to
The particular solution to
is of the form:
"y_{p_{1}}(x)=a_{1} e^{-x}"The particular solution to:
is of the form:
"\\text{Sum } y_{p_{1}}(x) \\text{ and } y_{p_{2}}(x) \\text{ to obtain } y_{p}(x): \\\\y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)=a_{1} e^{-x}+a_{2} \\cos (2 x)+a_{3} \\sin (2 x)\\\\\n\\text{}\\\\\n\\text{Solve for the unknown constants } a_{1}, a_{2}, \\text{ and } a_{3} :\\\\\n\\text{Compute } \\frac{d y_{p}(x)}{d x} :\\\\\n\\begin{aligned} \\frac{d y_{p}(x)}{d x} &=\\frac{d}{d x}\\left(a_{1} e^{-x}+a_{2} \\cos (2 x)+a_{3} \\sin (2 x)\\right) \\\\ &=-a_{1} e^{-x}-2 a_{2} \\sin (2 x)+2 a_{3} \\cos (2 x) \\end{aligned}"
"\\begin{aligned} \\text { Compute } & \\frac{d^{2} y_{p}(x)}{d x^{2}}: \\\\ \\frac{d^{2} y_{p}(x)}{d x^{2}} &=\\frac{d^{2}}{d x^{2}}\\left(a_{1} e^{-x}+a_{2} \\cos (2 x)+a_{3} \\sin (2 x)\\right) \\\\ &=a_{1} e^{-x}-4 a_{2} \\cos (2 x)-4 a_{3} \\sin (2 x) \\end{aligned}"
"\\text{Substitute the particular solution } y_{p}(x) \\text{ into the differential equation: }\\\\\n\\frac{d^{2} y_{p}(x)}{d x^{2}}+2 \\frac{d y_{p}(x)}{d x}+5 y_{p}(x)=4 e^{-x}+17 \\sin (2 x)\\\\\na_{1} e^{-x}-4 a_{2} \\cos (2 x)-4 a_{3} \\sin (2 x)+2\\left(-a_{1} e^{-x}-2 a_{2} \\sin (2 x)+2 a_{3} \\cos (2 x)\\right)+\n5\\left(a_{1} e^{-x}+a_{2} \\cos (2 x)+a_{3} \\sin (2 x)\\right)=4 e^{-x}+17 \\sin (2 x)\\\\\n\\text{}\\\\\n\\text{Simplify:}\\\\\n4 a_{1} e^{-x}+\\left(a_{2}+4 a_{3}\\right) \\cos (2 x)+\\left(-4 a_{2}+a_{3}\\right) \\sin (2 x)=4 e^{-x}+17 \\sin (2 x)\\\\\n\\text{}\\\\\n\\text{Equate the coefficients of } e^{-x} \\text{ on both sides of the equation: }\\\\\n4 a_{1}=4\\\\\n\\text{}\\\\\n\\text{Equate the coefficients of } \\cos (2 x) \\text{ on both sides of the equation:}\\\\\na_{2}+4 a_{3}=0\\\\\n\\text{}\\\\\n\\text{Equate the coefficients of } \\sin (2 x) \\text{ on both sides of the equation:}\\\\\n-4 a_{2}+a_{3}=17"
Solving the system, we get:
"\\text{}\\\\\n\\text{Substitute } a_{1}, a_{2}, \\text{ and } a_{3} \\text{ into } y_{p}(x)=e^{-x} a_{1}+\\cos (2 x) a_{2}+\\sin (2 x) a_{3}\\\\"
The general solution is:
"\\begin{aligned}\n&y(x)=y_{c}(x)+y_{p}(x)= \\\\\n&e^{-x}-4 \\cos (2 x)+\\sin (2 x)+c_{1} e^{-x} \\cos (2 x)+c_{2} e^{-x} \\sin (2 x)\n\\end{aligned}"
which is the required answer.
Comments
Leave a comment