Question #214109

Solve the ordinary di erential equation

y'' + 2y' + 5y = 4e-x + 17 sin 2x:


1
Expert's answer
2021-07-06T15:54:32-0400

Given the differential equation


y+2y+5y=4ex+17sin2xy'' + 2y' + 5y = 4e^{-x} + 17 \sin 2x

We can rewrite the equation as


d2y(x)dx2+2dy(x)dx+5y(x)=4ex+17sin(2x)\frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=4 e^{-x}+17 \sin (2 x)

The general solution will be the sum of the complementary solution and particular solution. We thus find the complementary solution by solving


d2y(x)dx2+2dy(x)dx+5y(x)=0\frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=0


Assume a solution will be proportional to eλxe^{\lambda x} for some constant λ.\lambda.  

Substitute y(x)=eλxy(x)=e^{\lambda x} into the differential equation:


d2dx2(eλx)+2ddx(eλx)+5eλx=0\frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)+2 \frac{d}{d x}\left(e^{\lambda x}\right)+5 e^{\lambda x}=0

Substitute:


d2dx2(eλx)=λ2eλx and ddx(eλx)=λeλx\frac{d^{2}}{d x^{2}}\left(e^{\lambda x}\right)=\lambda^{2} e^{\lambda x} \text{ and } \frac{d}{d x}\left(e^{\lambda x}\right)=\lambda e^{\lambda x}


λ2eλx+2λeλx+5eλx=0\lambda^{2} e^{\lambda x}+2 \lambda e^{\lambda x}+5 e^{\lambda x}=0

Factor out eλx:e^{\lambda x} :


(λ2+2λ+5)eλx=0\left(\lambda^{2}+2 \lambda+5\right) e^{\lambda x}=0

Since eλx0e^{\lambda x} \neq 0 for any finite λ\lambda , the zeros must come from the polynomial:


λ2+2λ+5=0\lambda^{2}+2 \lambda+5=0

Solve for λ\lambda :


λ=1+2i or λ=12i\lambda=-1+2 i \text{ or } \lambda=-1-2 i


The roots λ=1±2i give y1(x)=c1e(1+2i)x,y2(x)=c2e(12i)x as solutions,  where c1 and c2 are arbitrary constants.  The general solution is the sum of the above solutions: y(x)=y1(x)+y2(x)=c1e(1+2i)x+c2e(12i)xApply Euler’s identity eα+iβ=eαcos(β)+ieαsin(β):y(x)=c1(excos(2x)+iexsin(2x))+c2(excos(2x)iexsin(2x)) Regroup terms:y(x)=(c1+c2)excos(2x)+i(c1c2)exsin(2x)Redefine c1+c2 as c1 and i(c1c2) as c2, since these are arbitrary constants: y(x)=c1excos(2x)+c2exsin(2x)Determine the particular solution to d2y(0)dx2+2dy(x)dx+5y(x)=4ex+17sin(2x)by the method of undetermined coefficients: \text{The roots } \lambda=-1 \pm 2 i \text{ give } y_{1}(x)=c_{1} e^{(-1+2 i) x}, y_{2}(x)=c_{2} e^{(-1-2 i) x} \text{ as solutions, }\\ \text{ where } c_{1} \text{ and } c_{2} \text{ are arbitrary constants. } \text{ }\\ \text{The general solution is the sum of the above solutions: }\\ y(x)=y_{1}(x)+y_{2}(x)=c_{1} e^{(-1+2 i) x}+c_{2} e^{(-1-2 i) x} \text{Apply Euler's identity } e^{\alpha+i \beta}=e^{\alpha} \cos (\beta)+i e^{\alpha} \sin (\beta):\\ y(x)=c_{1}\left(e^{-x} \cos (2 x)+i e^{-x} \sin (2 x)\right)+c_{2}\left(e^{-x} \cos (2 x)-i e^{-x} \sin (2 x)\right)\\ \text{ }\\ \text{Regroup terms:}\\ y(x)=\left(c_{1}+c_{2}\right) e^{-x} \cos (2 x)+i\left(c_{1}-c_{2}\right) e^{-x} \sin (2 x)\\ \text{Redefine } c_{1}+c_{2} \text{ as } c_{1} \text{ and } i\left(c_{1}-c_{2}\right) \text{ as } c_{2}, \text{ since these are arbitrary constants: }\\ y(x)=c_{1} e^{-x} \cos (2 x)+c_{2} e^{-x} \sin (2 x)\\ \text{}\\ \text{Determine the particular solution to } \frac{d^{2} y(0)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=4 e^{-x}+17 \sin (2 x)\\ \text{by the method of undetermined coefficients: }


The particular solution will be the sum of the particular solutions to


d2y(x)dx2+2dy(x)dx+5y(x)=4ex and d2y(x)dx2+2dy(x)dx+5y(x)=17sin(2x).\frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=4 e^{-x} \text{ and } \frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=17 \sin (2 x).

The particular solution to


d2y(x)dx2+2dy(x)dx+5y(x)=4ex\frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=4 e^{-x}

is of the form:

yp1(x)=a1exy_{p_{1}}(x)=a_{1} e^{-x}

The particular solution to:


d2y(x)dx2+2dy(x)dx+5y(x)=17sin(2x)\frac{d^{2} y(x)}{d x^{2}}+2 \frac{d y(x)}{d x}+5 y(x)=17 \sin (2 x)

is of the form:


yp2(x)=a2cos(2x)+a3sin(2x)y_{p_{2}}(x)=a_{2} \cos (2 x)+a_{3} \sin (2 x)

Sum yp1(x) and yp2(x) to obtain yp(x):yp(x)=yp1(x)+yp2(x)=a1ex+a2cos(2x)+a3sin(2x)Solve for the unknown constants a1,a2, and a3:Compute dyp(x)dx:dyp(x)dx=ddx(a1ex+a2cos(2x)+a3sin(2x))=a1ex2a2sin(2x)+2a3cos(2x)\text{Sum } y_{p_{1}}(x) \text{ and } y_{p_{2}}(x) \text{ to obtain } y_{p}(x): \\y_{p}(x)=y_{p_{1}}(x)+y_{p_{2}}(x)=a_{1} e^{-x}+a_{2} \cos (2 x)+a_{3} \sin (2 x)\\ \text{}\\ \text{Solve for the unknown constants } a_{1}, a_{2}, \text{ and } a_{3} :\\ \text{Compute } \frac{d y_{p}(x)}{d x} :\\ \begin{aligned} \frac{d y_{p}(x)}{d x} &=\frac{d}{d x}\left(a_{1} e^{-x}+a_{2} \cos (2 x)+a_{3} \sin (2 x)\right) \\ &=-a_{1} e^{-x}-2 a_{2} \sin (2 x)+2 a_{3} \cos (2 x) \end{aligned}


 Compute d2yp(x)dx2:d2yp(x)dx2=d2dx2(a1ex+a2cos(2x)+a3sin(2x))=a1ex4a2cos(2x)4a3sin(2x)\begin{aligned} \text { Compute } & \frac{d^{2} y_{p}(x)}{d x^{2}}: \\ \frac{d^{2} y_{p}(x)}{d x^{2}} &=\frac{d^{2}}{d x^{2}}\left(a_{1} e^{-x}+a_{2} \cos (2 x)+a_{3} \sin (2 x)\right) \\ &=a_{1} e^{-x}-4 a_{2} \cos (2 x)-4 a_{3} \sin (2 x) \end{aligned}


Substitute the particular solution yp(x) into the differential equation: d2yp(x)dx2+2dyp(x)dx+5yp(x)=4ex+17sin(2x)a1ex4a2cos(2x)4a3sin(2x)+2(a1ex2a2sin(2x)+2a3cos(2x))+5(a1ex+a2cos(2x)+a3sin(2x))=4ex+17sin(2x)Simplify:4a1ex+(a2+4a3)cos(2x)+(4a2+a3)sin(2x)=4ex+17sin(2x)Equate the coefficients of ex on both sides of the equation: 4a1=4Equate the coefficients of cos(2x) on both sides of the equation:a2+4a3=0Equate the coefficients of sin(2x) on both sides of the equation:4a2+a3=17\text{Substitute the particular solution } y_{p}(x) \text{ into the differential equation: }\\ \frac{d^{2} y_{p}(x)}{d x^{2}}+2 \frac{d y_{p}(x)}{d x}+5 y_{p}(x)=4 e^{-x}+17 \sin (2 x)\\ a_{1} e^{-x}-4 a_{2} \cos (2 x)-4 a_{3} \sin (2 x)+2\left(-a_{1} e^{-x}-2 a_{2} \sin (2 x)+2 a_{3} \cos (2 x)\right)+ 5\left(a_{1} e^{-x}+a_{2} \cos (2 x)+a_{3} \sin (2 x)\right)=4 e^{-x}+17 \sin (2 x)\\ \text{}\\ \text{Simplify:}\\ 4 a_{1} e^{-x}+\left(a_{2}+4 a_{3}\right) \cos (2 x)+\left(-4 a_{2}+a_{3}\right) \sin (2 x)=4 e^{-x}+17 \sin (2 x)\\ \text{}\\ \text{Equate the coefficients of } e^{-x} \text{ on both sides of the equation: }\\ 4 a_{1}=4\\ \text{}\\ \text{Equate the coefficients of } \cos (2 x) \text{ on both sides of the equation:}\\ a_{2}+4 a_{3}=0\\ \text{}\\ \text{Equate the coefficients of } \sin (2 x) \text{ on both sides of the equation:}\\ -4 a_{2}+a_{3}=17


Solving the system, we get:


a1=1a2=4a3=1a_{1}=1\\ a_{2}=-4\\ a_{3}=1\\

Substitute a1,a2, and a3 into yp(x)=exa1+cos(2x)a2+sin(2x)a3\text{}\\ \text{Substitute } a_{1}, a_{2}, \text{ and } a_{3} \text{ into } y_{p}(x)=e^{-x} a_{1}+\cos (2 x) a_{2}+\sin (2 x) a_{3}\\


yp(x)=ex4cos(2x)+sin(2x)y_{p}(x)=e^{-x}-4 \cos (2 x)+\sin (2 x)

The general solution is:

y(x)=yc(x)+yp(x)=ex4cos(2x)+sin(2x)+c1excos(2x)+c2exsin(2x)\begin{aligned} &y(x)=y_{c}(x)+y_{p}(x)= \\ &e^{-x}-4 \cos (2 x)+\sin (2 x)+c_{1} e^{-x} \cos (2 x)+c_{2} e^{-x} \sin (2 x) \end{aligned}


which is the required answer.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS