Given the differential equation
y′′+2y′+5y=4e−x+17sin2x We can rewrite the equation as
dx2d2y(x)+2dxdy(x)+5y(x)=4e−x+17sin(2x) The general solution will be the sum of the complementary solution and particular solution. We thus find the complementary solution by solving
dx2d2y(x)+2dxdy(x)+5y(x)=0
Assume a solution will be proportional to eλx for some constant λ.
Substitute y(x)=eλx into the differential equation:
dx2d2(eλx)+2dxd(eλx)+5eλx=0 Substitute:
dx2d2(eλx)=λ2eλx and dxd(eλx)=λeλx
λ2eλx+2λeλx+5eλx=0Factor out eλx:
(λ2+2λ+5)eλx=0
Since eλx=0 for any finite λ , the zeros must come from the polynomial:
λ2+2λ+5=0 Solve for λ :
λ=−1+2i or λ=−1−2i
The roots λ=−1±2i give y1(x)=c1e(−1+2i)x,y2(x)=c2e(−1−2i)x as solutions, where c1 and c2 are arbitrary constants. The general solution is the sum of the above solutions: y(x)=y1(x)+y2(x)=c1e(−1+2i)x+c2e(−1−2i)xApply Euler’s identity eα+iβ=eαcos(β)+ieαsin(β):y(x)=c1(e−xcos(2x)+ie−xsin(2x))+c2(e−xcos(2x)−ie−xsin(2x)) Regroup terms:y(x)=(c1+c2)e−xcos(2x)+i(c1−c2)e−xsin(2x)Redefine c1+c2 as c1 and i(c1−c2) as c2, since these are arbitrary constants: y(x)=c1e−xcos(2x)+c2e−xsin(2x)Determine the particular solution to dx2d2y(0)+2dxdy(x)+5y(x)=4e−x+17sin(2x)by the method of undetermined coefficients:
The particular solution will be the sum of the particular solutions to
dx2d2y(x)+2dxdy(x)+5y(x)=4e−x and dx2d2y(x)+2dxdy(x)+5y(x)=17sin(2x). The particular solution to
dx2d2y(x)+2dxdy(x)+5y(x)=4e−x is of the form:
yp1(x)=a1e−x The particular solution to:
dx2d2y(x)+2dxdy(x)+5y(x)=17sin(2x) is of the form:
yp2(x)=a2cos(2x)+a3sin(2x)Sum yp1(x) and yp2(x) to obtain yp(x):yp(x)=yp1(x)+yp2(x)=a1e−x+a2cos(2x)+a3sin(2x)Solve for the unknown constants a1,a2, and a3:Compute dxdyp(x):dxdyp(x)=dxd(a1e−x+a2cos(2x)+a3sin(2x))=−a1e−x−2a2sin(2x)+2a3cos(2x)
Compute dx2d2yp(x)dx2d2yp(x):=dx2d2(a1e−x+a2cos(2x)+a3sin(2x))=a1e−x−4a2cos(2x)−4a3sin(2x)
Substitute the particular solution yp(x) into the differential equation: dx2d2yp(x)+2dxdyp(x)+5yp(x)=4e−x+17sin(2x)a1e−x−4a2cos(2x)−4a3sin(2x)+2(−a1e−x−2a2sin(2x)+2a3cos(2x))+5(a1e−x+a2cos(2x)+a3sin(2x))=4e−x+17sin(2x)Simplify:4a1e−x+(a2+4a3)cos(2x)+(−4a2+a3)sin(2x)=4e−x+17sin(2x)Equate the coefficients of e−x on both sides of the equation: 4a1=4Equate the coefficients of cos(2x) on both sides of the equation:a2+4a3=0Equate the coefficients of sin(2x) on both sides of the equation:−4a2+a3=17
Solving the system, we get:
a1=1a2=−4a3=1 Substitute a1,a2, and a3 into yp(x)=e−xa1+cos(2x)a2+sin(2x)a3
yp(x)=e−x−4cos(2x)+sin(2x)
The general solution is:
y(x)=yc(x)+yp(x)=e−x−4cos(2x)+sin(2x)+c1e−xcos(2x)+c2e−xsin(2x)
which is the required answer.
Comments