Answer to Question #214230 in Differential Equations for SID

Question #214230

Let x

α

y

β be an integrating factor of x(4ydx + 2xdy) + y

3

(3ydx + 5xdy) = 0. Find α, β and

the solution of given differential equation.


1
Expert's answer
2021-07-08T04:58:11-0400

Question

Let x"^\\alpha"y"^\\beta" be an integrating factor of x (4ydx+2xdy)+y3(3ydx+5xdy)=0. Find "\\alpha and \\beta" and solution of the given differential equation.

Solution.

The equation can be written as;

4xydx +2x2dy +3y4dx+5xy3dy=0

(4xy+3y4)dx+(2x2+5xy3)dy=0

Is an equation of the form ;

P(x,y)dx+Q(x,y)dy=0

"\\frac {dP}{dy}"=4x+12y3

"\\frac {dQ}{dx}" =4x+5y3

"\\frac {dP}{dy}\\not = \\frac {dQ}{dx}" ;the equation is not exact.

We multiply the equation with the interesting factor for it to be exact.

x"^\\alpha"y"^\\beta" (4xy+3y4)dx+x"^\\alpha y^\\beta"(2x2+5xy3)dy=0

(4x"^{1+\\alpha}y^{1+\\beta}+3x^\\alpha y^{4+\\beta}" )dx +(2"x^{2+\\alpha}y^\\beta+5x^{1+\\alpha}y^{3+\\beta})" dy=0

For the equation to be exact;

"\\frac {dP}{dy}=\\frac {dQ}{dx}"

"4(1+\\beta)x^{1+\\alpha}y^\\beta+3(4+\\beta)x^\\alpha y^{3+\\beta}=2(2+\\alpha)x^{1+\\alpha}y^\\beta+5(1+\\alpha)x^\\alpha y^{3+\\beta}"

Equate like terms together;

4(1+"\\beta)=2(2+\\alpha)" ;"\\alpha=2\\beta"

3("4+\\beta)=5(1+\\alpha)"

Both give ;

"\\beta=1,\\alpha=2"

The integrating factor "x^\\alpha y^\\beta=x^2y"y

P(x,y)dx+Q(x,y)dy=0

Becomes,

(4x3y2+3x2y5)dx+(2x4y+5x3y4)dy=0

Integration of either Pdx or Qdy gives;

x4y2+x3y5=C

Answers;

"\\alpha=2"

"\\beta=1"

Solution;

x4y2+x3y5=C



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog