Let x
α
y
β be an integrating factor of x(4ydx + 2xdy) + y
3
(3ydx + 5xdy) = 0. Find α, β and
the solution of given differential equation.
Question
Let x"^\\alpha"y"^\\beta" be an integrating factor of x (4ydx+2xdy)+y3(3ydx+5xdy)=0. Find "\\alpha and \\beta" and solution of the given differential equation.
Solution.
The equation can be written as;
4xydx +2x2dy +3y4dx+5xy3dy=0
(4xy+3y4)dx+(2x2+5xy3)dy=0
Is an equation of the form ;
P(x,y)dx+Q(x,y)dy=0
"\\frac {dP}{dy}"=4x+12y3
"\\frac {dQ}{dx}" =4x+5y3
"\\frac {dP}{dy}\\not = \\frac {dQ}{dx}" ;the equation is not exact.
We multiply the equation with the interesting factor for it to be exact.
x"^\\alpha"y"^\\beta" (4xy+3y4)dx+x"^\\alpha y^\\beta"(2x2+5xy3)dy=0
(4x"^{1+\\alpha}y^{1+\\beta}+3x^\\alpha y^{4+\\beta}" )dx +(2"x^{2+\\alpha}y^\\beta+5x^{1+\\alpha}y^{3+\\beta})" dy=0
For the equation to be exact;
"\\frac {dP}{dy}=\\frac {dQ}{dx}"
"4(1+\\beta)x^{1+\\alpha}y^\\beta+3(4+\\beta)x^\\alpha y^{3+\\beta}=2(2+\\alpha)x^{1+\\alpha}y^\\beta+5(1+\\alpha)x^\\alpha y^{3+\\beta}"
Equate like terms together;
4(1+"\\beta)=2(2+\\alpha)" ;"\\alpha=2\\beta"
3("4+\\beta)=5(1+\\alpha)"
Both give ;
"\\beta=1,\\alpha=2"
The integrating factor "x^\\alpha y^\\beta=x^2y"y
P(x,y)dx+Q(x,y)dy=0
Becomes,
(4x3y2+3x2y5)dx+(2x4y+5x3y4)dy=0
Integration of either Pdx or Qdy gives;
x4y2+x3y5=C
Answers;
"\\alpha=2"
"\\beta=1"
Solution;
x4y2+x3y5=C
Comments
Leave a comment