y′′+3y′+2y=cos2x
Write the related homogeneous or complementary equation:
y′′+3y′+2y=0
The general solution of a nonhomogeneous equation is the sum of the general solution yh(x) of the related homogeneous equation and a particular solution yp(x) of the nonhomogeneous equation:
y(x)=yh(x)+yp(x) Consider a homogeneous equation
y′′+3y′+2y=0 Write the characteristic (auxiliary) equation:
r2+3r+2=0
(r+2)(r+1)=0
r1=−2,r2=−1 The general solution of the homogeneous equation is
yh(x)=C1e−2x+C2e−x
Let
yp=Asin2x+Bcos2x Then
yp′=2Acos2x−2Bsin2x
yp′′=−4Asin2x−4Bcos2x
+x(−Asinx−Bcosx)
Substitute
−4Asin2x−4Bcos2x+6Acos2x−6Bsin2x
+2Asin2x+2Bcos2x=cos2x
−2A−6B=0
6A−2B=1
A=203,B=−201
The general solution of a second order nonhomogeneous differential equation be
y(x)=C1e−2x+C2e−x+203sin2x−201cos2x
Comments