Question #210825
(D2+3D+2)y=cos2x
1
Expert's answer
2021-06-28T04:02:13-0400
y+3y+2y=cos2xy''+3y'+2y=\cos2x


Write the related homogeneous or complementary equation:


y+3y+2y=0y''+3y'+2y=0


The general solution of a nonhomogeneous equation is the sum of the general solution yh(x)y_h(x) of the related homogeneous equation and a particular solution yp(x)y_p(x) of the nonhomogeneous equation:


y(x)=yh(x)+yp(x)y(x)=y_h(x)+y_p(x)

Consider a homogeneous equation 


y+3y+2y=0y''+3y'+2y=0

Write the characteristic (auxiliary) equation:


r2+3r+2=0r^2+3r+2=0

(r+2)(r+1)=0(r+2)(r+1)=0

r1=2,r2=1r_1=-2, r_2=-1

The general solution of the homogeneous equation is


yh(x)=C1e2x+C2exy_h(x)=C_1e^{-2x}+C_2e^{-x}


Let

yp=Asin2x+Bcos2xy_p=A\sin 2x+B\cos 2x

Then


yp=2Acos2x2Bsin2xy_p'=2A\cos 2x-2B\sin 2x

yp=4Asin2x4Bcos2xy_p''=-4A\sin2x-4B\cos 2x

+x(AsinxBcosx)+x(-A\sin x-B\cos x)


Substitute


4Asin2x4Bcos2x+6Acos2x6Bsin2x-4A\sin2x-4B\cos 2x+6A\cos 2x-6B\sin 2x

+2Asin2x+2Bcos2x=cos2x+2A\sin 2x+2B\cos 2x=\cos 2x

2A6B=0-2A-6B=0

6A2B=16A-2B=1


A=320,B=120A=\dfrac{3}{20}, B=-\dfrac{1}{20}



The general solution of a second order nonhomogeneous differential equation be


y(x)=C1e2x+C2ex+320sin2x120cos2xy(x)=C_1e^{-2x}+C_2e^{-x}+\dfrac{3}{20}\sin 2x-\dfrac{1}{20}\cos 2x




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS