In the following one solution of a second y1 order linear homogene DE is given. Find the second linearly independent solution y2 using the method of reduction of order.
2x²y" + 3xy'-y=0 ,. y1=(1/x)
(1-x2)y"-2xy'+2y=0 , y1=x
x2y"+2xy'-2y=0,. y1=x
x2y"+3xy'+y=0, y1=1/x
x2y"-x(x+2)y'=0,. y1=x
1.
"y(x)=u(x)y_1(x)"
"y(x)=u(x)x^{-1}"
"y'=u'x^{-1}-ux^{-2}"
"y''=u''x^{-1}-2u'x^{-2}+2ux^{-3}"
"-ux^{-1}=0"
"2xu''-4u'+4ux^{-1}+3u'-3ux^{-1}-ux^{-1}=0"
"2xu''-u'=0"
"u'=w, u''=w'"
"2xw'-w=0"
"\\dfrac{dw}{w}=\\dfrac{dx}{2x}"
"\\int\\dfrac{dw}{w}=\\int\\dfrac{dx}{2x}"
"\\ln|w|=\\dfrac{1}{2}\\ln|x|+\\ln C_1"
"w=C_1\\sqrt{x}"
"u'=C_1\\sqrt{x}"
"\\int du=\\int C_1\\sqrt{x}dx"
"u=C_2x^{3\/2}+C_3"
"y(x)=u(x)x^{-1}"
"y(x)=C_2x^{1\/2}+C_3x^{-1}"
2.
"y(x)=u(x)y_1(x)"
"y(x)=u(x)x"
"y'=u'x+u"
"y''=u''x+2u'"
"x(1-x^2)u''+2u'-2x^2u'-2x^2u'-2ux+2ux=0"
"x(1-x^2)u''+(2-4x^2)u'=0"
"u'=w, u''=w'"
"x(1-x^2)w'+(2-4x^2)w=0"
"\\dfrac{dw}{w}=\\dfrac{2-4x^2}{x(1-x^2)}dx"
"\\int\\dfrac{dw}{w}=\\int\\dfrac{2-4x^2}{x(1-x^2)}dx"
"\\dfrac{2-4x^2}{x(1-x^2)}dx=\\dfrac{A}{x}dx+\\dfrac{B}{1-x}dx+\\dfrac{C}{1+x}dx"
"A(1-x^2)+Bx(1+x)+Cx(1-x)=2-4x^2"
"A-Ax^2+Bx+Bx^2+Cx-Cx^2=2-4x^2"
"A=2"
"B+C=0"
"-A+B-C=-4"
"A=2, B=-1, C=1"
"\\int\\dfrac{dw}{w}=\\int\\dfrac{2}{x}dx-\\int\\dfrac{1}{1-x}dx+\\int\\dfrac{1}{1+x}dx"
"\\ln|w|=2\\ln|x|+\\ln|1-x|+\\ln|1+x|+\\ln C_1"
"w=C_1x^2(1-x^2)"
"u'=C_1x^2(1-x^2)"
"u=\\dfrac{1}{3}C_1x^3-\\dfrac{1}{5}C_1x^5+C_2"
"y=\\dfrac{1}{3}C_1x^4-\\dfrac{1}{5}C_1x^6+C_2x"
3.
"y(x)=u(x)y_1(x)"
"y(x)=u(x)x"
"y'=u'x+u"
"y''=u''x+2u'"
"x^3u''+2x^2u'+2ux-2ux=0"
"x^3u''+2x^2u'=0"
"u'=w, u''=w'"
"x^3w'+2x^2w=0"
If "x\\not=0"
"\\dfrac{dw}{w}=-\\dfrac{2}{x}dx""\\int\\dfrac{dw}{w}=-\\int\\dfrac{2}{x}dx"
"\\ln|w|=-2\\ln|x|+\\ln C_1"
"w=\\dfrac{C_1}{x^2}"
"u'=\\dfrac{C_1}{x^2}"
"u=-\\dfrac{C_1}{x}+C_2"
"y=C_3+C_2x"
4.
"y(x)=u(x)y_1(x)"
"y(x)=u(x)x^{-1}"
"y'=u'x^{-1}-ux^{-2}"
"y''=u''x^{-1}-2u'x^{-2}+2ux^{-3}"
"+ux^{-1}=0"
"xu''-2u'+2ux^{-1}+3u'-3ux^{-1}+ux^{-1}=0"
"xu''+u'=0"
"u'=w, u''=w'"
"xw'+w=0"
"\\dfrac{dw}{w}=-\\dfrac{dx}{x}"
"\\int\\dfrac{dw}{w}=-\\int\\dfrac{dx}{x}"
"\\ln|w|=-\\ln|x|+\\ln C_1"
"w=\\dfrac{C_1}{x}"
"u'=\\dfrac{C_1}{x}"
"\\int du=\\int \\dfrac{C_1}{x}dx"
"u=C_1\\ln|x|+C_2"
"y(x)=u(x)x^{-1}"
"y(x)=\\dfrac{C_1\\ln x}{x}+\\dfrac{C_2}{x}"
5.
If "x\\not=0"
"y'=w, y''=w'"
"xw'-(x+2)w=0"
If "x\\not=0"
"\\dfrac{dw}{w}=\\dfrac{x+2}{x}dx""\\int\\dfrac{dw}{w}=\\int\\dfrac{x+2}{x}dx"
"\\ln |w|=x+\\ln x^2+\\ln C_1"
"y'=C_1x^2e^x"
"y=\\int C_1x^2e^xdx""\\int C_1x^2e^xdx=C_1x^2e^x-2C_1\\int xe^xdx"
"=C_1x^2e^x-2C_1xe^x+2C_1\\int e^xdx"
"=C_1x^2e^x-2C_1xe^x+2C_1e^x+C_2"
"y=C_1x^2e^x-2C_1xe^x+2C_1e^x+C_2"
Comments
Thank you Sir NICE Experience
Leave a comment