Answer to Question #210364 in Differential Equations for Uzair Mughal

Question #210364

xdy + (y - x2 y2 ) dx = 0


1
Expert's answer
2021-07-20T15:53:42-0400

Solution

"xdy + (y - x^2y^2 ) dx = 0"


Divide through by "dx" as follows

"x{dy\\over dx} + (y - x^2y^2 ){ dx\\over dx} = {0\\over dx}"

We get

"x{dy\\over dx} + (y - x^2y^2 ) =0"

"x{dy\\over dx} + y - x^2y^2 =0"

This is a first-order nonlinear differential equation

Let "u=xy"

Use product rule of differentiation to differentiate "u=xy" with respect to "x"

"u=xy"

"{du\\over dx}=({d\\over dx}(x)).y+x.({d\\over dx}(y))"

"\\implies {du\\over dx}=y+x{dy\\over dx}"

From "{du\\over dx}=y+x{dy\\over dx}" ,We can get expression for "{dy\\over dx}"

"{du\\over dx}=y+x{dy\\over dx}"

"x{dy\\over dx}={du\\over dx}-y"

Now, divide through by "x" to get

"{dy\\over dx}={{du\\over dx}-y \\over x}={{du\\over dx}\\over x}-{y\\over x}"


From "u=xy" , "y={u\\over x}"


"\\therefore {dy\\over dx}={{du\\over dx}\\over x}-{{u\\over x}\\over x} ={{du\\over dx}\\over x}-{u\\over x^2}"


Now, let's substitute "{dy\\over dx}" and "y" to the differential equation


"x{dy\\over dx} + y - x^2y^2 =0"


"x({{du\\over dx}\\over x}-{u\\over x^2})+ {u\\over x} - x^2({u\\over x})^2 =0"


"{{du\\over dx}}-{u\\over x}+ {u\\over x} - x^2.{u^2\\over x^2} =0"


"{{du\\over dx}}- u^2=0"


"\\implies {du\\over dx}=u^2 \\implies {du\\over u^2}=dx"

Take integral on both sides of "{du\\over u^2}=dx"


we have


"\\int{du\\over u^2}=\\int dx \\implies -{1\\over u}=x+C \\implies u=-{1\\over x+C}"


Recall "y={u\\over x} \\implies y={-{1\\over x+C}\\over x}=-{1\\over x+C}\\times{1\\over x}=-{1\\over x(x+C)}"


"\\therefore" the general solution is thus "y=-{1\\over x(x+C)}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog