b. Find the series solution of the following differential equation
dz/dt -zet=tz
Solution
Let
"z\\left(t\\right)=\\sum_{n=0}^{\\infty}{a_nt^n}"
"\\frac{dz}{dt}=\\sum_{n=1}^{\\infty}{na_nt^{n-1}}=\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}t^n}"
It’s known that
"e^t=\\sum_{n=0}^{\\infty}\\frac{t^n}{n!}"
"ze^t=\\sum_{n=0}^{\\infty}\\left(\\sum_{i=0}^{n}\\frac{a_{n-i}}{i!}\\right)t^n"
Plug these into the differential equation
"\\sum_{n=0}^{\\infty}{\\left(n+1\\right)a_{n+1}t^n}-\\sum_{n=0}^{\\infty}\\left(\\sum_{i=0}^{n}\\frac{a_{n-i}}{i!}\\right)t^n=\\sum_{n=1}^{\\infty}{a_{n-1}t^n}"
Coefficient near tn are equal to zero.
n=0 : a1- a0=0 => a1 = a0
n=1 : 2a2- a0- a1 = a0 => a2= a0+ a1/2 => a2= 3a0/2
n=2 : 3a3- a0/2- a1 -a2= a1 => a3= a0/3!+2a1/3+ a2/3 => a3= a0/3!+2a0/3+ 3a0/6 => a3= 8a0/3!
n=3 : 4a4- a0/3!- a1 /2!-a2-a3 =a2 => a4= a0/4!+a1/8+ 2a2/4 + a3/4 => a4= a0/4!+a0/8+ 2*3a0/8 + 8a0/4! => a4= 30a0/4!
n=4 : 5a5- a0/4!- a1 /3!-a2/2!-a3 -a4 =a3 => a5= a0/5!+ a1 /(5*3!)+a2/(5*2!)+2a3/5+a4/5 => a5= a0/5!+ a0/(5*3!)+3a0/(5*2*2!)+16a0/(5*3!)+30a0/5! = a0/5!+ 4a0/5!+18a0/5!+64a0/(5!)+30a0/5! => a5= 117a0/5!
And so on. For an= bn/n! we’ll get simplified recurrent formula for bn
"b_1=b_0;\\ b_{n+1}=\\sum_{i=0}^{n}{\\binom{n}{i}b_{n-i}}+nb_{n-1}\\ (n>0)"
and solution
"z\\left(t\\right)=\\sum_{n=0}^{\\infty}{\\frac{b_n}{n!}t^n}"
Comments
Leave a comment