w (4v + w) dv - 2 (v^2 - w) dw = 0
"P_w=4v+2w"
"Q_v=-4v"
"P_w-Q_v=4v+2w+4v=8v+2w"
"\\dfrac{P_w-Q_v}{P}=\\dfrac{8v+2w}{4vw+w^2}=\\dfrac{2}{w}=-\\psi(w)"
"M_w=-4\\dfrac{v}{w^2}"
"M_w=-4\\dfrac{v}{w^2}=N_v"
"u(v,w)=\\int(4\\dfrac{v}{w}+1)dv+\\varphi(w)"
"=2\\dfrac{v^2}{w}+v+\\varphi(w)"
"u_w=-2\\dfrac{v^2}{w^2}+\\varphi'(w)"
"=-2\\dfrac{v^2}{w^2}+2\\dfrac{1}{w}"
"\\varphi'(w)=2\\dfrac{1}{w}"
"\\varphi(w)=2\\ln w+C_1"
The general solution of the differential equation
is given by
Comments
Leave a comment