In the following one solution of a second y1 order linear homogene DE is given. Find the second linearly independent solution y2 using the method of reduction of order.
1.
Euler Equation.
"y=x^m"
Then:
"x^2m(m-1)x^{m-2}+3\/2xmx^{m-1}-x^m\/2=0"
Characteristic Equation:
"m(m-1)+\\frac{3}{2}m+\\frac{1}{2}=0"
or
"m^2+\\frac{1}{2}m+\\frac{1}{2}=0"
"m_{1,2}=\\frac{-1\\pm i\\sqrt{3}}{4}"
Thus, the general solution is
"y=x^{-1\/4}[c_1cos(\\sqrt{3}ln|x|\/4)+c_2sin(\\sqrt{3}ln|x|\/4)]"
2.
"(1+x^2)y''-2xy'+2y=0"
"y_1=x"
"y''-2xy'\/(1+x^2)+2y\/(1+x^2)=0"
"y_2=\\int\\frac{e^{-\\int p(x)dx}}{y^2_1}dx"
where p(x)=-2x/(1+x2)
Then:
"\\int \\frac{2x}{1+x^2}dx=ln|1+x^2|"
"y_2=\\int \\frac{dx}{x^2(1+x^2)}=-1\/x+arctanx"
"\\frac{1}{x^2(1+x^2)}=\\frac{A}{x}+\\frac{B}{x^2}+\\frac{Cx+D}{1+x^2}"
"Ax(1+x^2)+B(1+x^2)+Cx^3+Dx^2=1"
"A+C=0"
"B+D=0"
"A=0,B=1,D=-1,C=0"
3.
x2y"+2xy'-2y=0
"y=x^m"
The characteristic equation:
"m(m-1)+2m-2=0"
"m_{1}=\\frac{-1+ 3}{2}=1,m_2=-2"
The general solution is
"y=c_1x+c_2x^{-2}"
4.
x2y"+3xy'+y=0
"y=x^m"
The characteristic equation:
"m(m-1)+3m+1=0"
"m_{1,2}=\\frac{-2}{2}=-1"
"y_1=x^{-1},y_2=x^{-1}ln|x|"
5.
x2y"-x(x+2)y'=0
"y'=z,y''=dz\/dx"
Then:
"x^2z'-x(x+2)z=0"
"\\frac{dz}{z}=\\frac{x(x+2)}{x^2}dx"
"ln|z|=x+2ln|x|+c_1"
"z=x^2e^{c_1x}"
"y=\\intop x^2e^{c_1x}dx=\\frac{e^{c_1x}(c_1^2x^2-2c_1x+2)}{c_1^3}+c_2"
Comments
Leave a comment