Question #210645

utt =c2uxx=, 0<x<1

u(0,1)=0, t >0

u(1, t)=0, t >0

u(x, 0)= 2x(1-x), (0<=x <= 1)

ut (x, 0) =0


1
Expert's answer
2021-07-04T17:06:38-0400

Using the variable separable method.

Let u(x,t) = X(x)T(t)

Then, the given differential equation becomes

X(x)T(t)=c2X(x)T(t)X(x)T''(t) = c^2X''(x) T(t)

So we have that

1c2Td2Tdt2=1Xd2Xdx2\dfrac{1}{c^2T} \dfrac{d^2T}{dt^2} = \dfrac{1}{X} \dfrac{d^2X}{dx^2}

Using the information that

u(0,t)=0=u(1,t)u(0,t) = 0 = u(1,t)

We have that the general solution is of the form

u(x,t)=n=1[Ancos(nπc)t+Bnsin(nπc)t][sin(nπ)x]u(x,t) = \sum_{n=1}^{\infty}[A_n \cos(n\pi c)t +B_n \sin (n\pi c)t] [sin(n\pi )x]

u(x,0)=n=1Ansin(nπ)x=2x(1x)u(x,0) = \sum_{n=1}^{\infty}A_n \sin (n \pi )x= 2x(1-x)

ut(x,0)=n=1Bnnπcsin(nπ)x=0u_t(x,0) = \sum_{n=1}^{\infty} B_n n\pi c \sin (n \pi )x = 0

With

An=2012x(1x)sin(nπ)xdxA_n = 2 \int_{0}^{1} 2x(1-x) \sin (n \pi )x dx

And

Bn=2nπc010sin(nπ)xdx=0B_n = \dfrac{2}{n \pi c} \int_{0}^{1} 0 \sin (n\pi )x dx = 0

We evaluate the integral

01(2x2x2)sin(nπ)xdx=\int_{0}^{1} (2x-2x^2) \sin (n\pi )x dx =

[(2x2x2)(1nπcosnπx)]01+[(24x)(1(nπ)2sinnπx)]01[(2x-2x^2)(\dfrac{-1}{n\pi} \cos n\pi x)]_0^1 + [(2-4x)(\dfrac{1}{(n\pi)^2} \sin n\pi x)]_0^1

+4(nπ)201sin(nπ)xdx+ \dfrac{4}{(n\pi)^2} \int_0^1 \sin (n\pi )xdx

=4(nπ)3[(1)n+1+1]= \dfrac{4}{(n\pi)^3} [(-1)^{n+1}+1]

Hence,

An=8(nπ)3[(1)n+1+1]A_n = \dfrac{8}{(n\pi)^3} [(-1)^{n+1}+1]

But since the value of Bn=0B_n = 0

We have that the solution with respect to the given conditions becomes

u(x,t)=n=1Ancos(nπc)tsin(nπ)xu(x,t) = \sum_{n=1}^{\infty} A_n \cos(n \pi c)t \sin( n \pi )x

where

An=8(nπ)3[(1)n+1+1]A_n = \dfrac{8}{(n\pi)^3} [(-1)^{n+1}+1]










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS