Solve the initial value probelm of y'-y=e^x, y(1)=0
"\\text{The integrating factor is } e^{-\\int dx}=e^{-x}\\\\\\text{Multiply the given differential equation by } e^{-x}\n\\\\\\implies e^{-x}y'-e^{-x}y=e^{-x}e^x\\\\\\int d(e^{-x}y)=\\int1dx\\\\e^{-x}y=x+c\\\\y=xe^x+ce^{x}\\\\\\text{Recall that y(1)=0}\\\\\\implies0=e^1 +ce^1\\\\\\text{Therefore c = -1, hence the general solution is }y =xe^x-e^x"
Comments
Leave a comment