Solve the following PDE using the method of separation of variables and Fourier series
utt = c2uxx, 0<x<1, t<0
u(0,t) = 0, t>0
u(1,t) = 0, t>0
u(x,0) = 2x(1-x), 0<=x<=1
ut(x,0) =0
We consider the wave equation satisfying Dirichlet boundary condition:
"u_{tt}=c^2u_{xx}" , "0<x<1,\\ \\ t>0"
"u(0,t)=u(1,t)=0" , "t\\geq 0"
"u(x,0)=2x(1-x),\\quad 0\\leq x\\leq 1"
"u_t(x,0)=0,\\quad\\quad \\quad \\quad \\ 0\\leq x\\leq 1"
We look for solutions of the form "u(x,t)=\\sum \\limits_{n=1}^\\infty\\big(A_n\\cos (\\pi nct)+B_n\\sin (\\pi nct)\\big) \\sin (\\pi nx)"
Setting "t=0" , we get
"u(x,0)= \\sum \\limits_{n=1}^\\infty A_n\\sin (\\pi nx)=2x(1-x)"
Coefficients "A_n" are equal to "A_n=2\\int \\limits_0^1 2x(1-x)\\sin (\\pi nx)dx=- \\frac{\\cos (\\pi nx)}{\\pi n} 4x(1-x)\\bigg|_0^1+\\int\\limits_0^1 \\frac{\\cos (\\pi nx)}{\\pi n}4(1-2x)dx= \\int\\limits_0^1 \\frac{\\cos (\\pi nx)}{\\pi n}4(1-2x)dx= \\frac{\\sin (\\pi nx)}{\\pi ^2 n^2 }4(1-2x)\\bigg|_0^1 +\\frac{8}{\\pi^2n^2}\\int\\limits_0^1 \\sin (\\pi n x)dx=-\\frac{\\cos (\\pi n x)}{\\pi n}\\cdot \\frac{8}{\\pi^2n^2}\\bigg|_0^1 =\\frac{8}{\\pi^3n^3}(1-\\cos(\\pi n))=\\begin{cases}\n0, \\quad n=2k\n\\\\\n\\frac{16}{\\pi^3n^3}, \\quad n=2k+1\n\\end{cases}"
"u_t(x,t)=\\sum \\limits_{n=1}^\\infty \\pi n c\\big(B_n\\cos (\\pi nct)-A_n\\sin (\\pi nct)\\big) \\sin (\\pi nx)"
Setting "t=0" , we get
"u_t(x,0)=\\sum\\limits_{n=1}^\\infty \\pi n cB_n\\sin (\\pi n x)=0"
Therefore, "B_n=0\\ \\ \\forall n" .
Answer: "u(x,t)=\\sum\\limits_{k=0}^\\infty \\frac{16}{\\pi^3(2k+1)^3}\\cos (\\pi (2k+1)ct) \\sin (\\pi(2k+1)x)."
Comments
Leave a comment