Answer to Question #210648 in Differential Equations for zain

Question #210648

Solve the following PDE using the method of separation of variables and Fourier series

utt = c2uxx, 0<x<1, t<0

u(0,t) = 0, t>0

u(1,t) = 0, t>0

u(x,0) = 2x(1-x), 0<=x<=1

ut(x,0) =0


1
Expert's answer
2021-06-28T03:56:09-0400

We consider the wave equation satisfying Dirichlet boundary condition:

"u_{tt}=c^2u_{xx}" , "0<x<1,\\ \\ t>0"

"u(0,t)=u(1,t)=0" , "t\\geq 0"

"u(x,0)=2x(1-x),\\quad 0\\leq x\\leq 1"

"u_t(x,0)=0,\\quad\\quad \\quad \\quad \\ 0\\leq x\\leq 1"


We look for solutions of the form "u(x,t)=\\sum \\limits_{n=1}^\\infty\\big(A_n\\cos (\\pi nct)+B_n\\sin (\\pi nct)\\big) \\sin (\\pi nx)"

Setting "t=0" , we get

"u(x,0)= \\sum \\limits_{n=1}^\\infty A_n\\sin (\\pi nx)=2x(1-x)"

Coefficients "A_n" are equal to "A_n=2\\int \\limits_0^1 2x(1-x)\\sin (\\pi nx)dx=- \\frac{\\cos (\\pi nx)}{\\pi n} 4x(1-x)\\bigg|_0^1+\\int\\limits_0^1 \\frac{\\cos (\\pi nx)}{\\pi n}4(1-2x)dx= \\int\\limits_0^1 \\frac{\\cos (\\pi nx)}{\\pi n}4(1-2x)dx= \\frac{\\sin (\\pi nx)}{\\pi ^2 n^2 }4(1-2x)\\bigg|_0^1 +\\frac{8}{\\pi^2n^2}\\int\\limits_0^1 \\sin (\\pi n x)dx=-\\frac{\\cos (\\pi n x)}{\\pi n}\\cdot \\frac{8}{\\pi^2n^2}\\bigg|_0^1 =\\frac{8}{\\pi^3n^3}(1-\\cos(\\pi n))=\\begin{cases}\n0, \\quad n=2k\n\\\\\n\\frac{16}{\\pi^3n^3}, \\quad n=2k+1\n\\end{cases}"



"u_t(x,t)=\\sum \\limits_{n=1}^\\infty \\pi n c\\big(B_n\\cos (\\pi nct)-A_n\\sin (\\pi nct)\\big) \\sin (\\pi nx)"

Setting "t=0" , we get 

"u_t(x,0)=\\sum\\limits_{n=1}^\\infty \\pi n cB_n\\sin (\\pi n x)=0"

Therefore, "B_n=0\\ \\ \\forall n" .


Answer: "u(x,t)=\\sum\\limits_{k=0}^\\infty \\frac{16}{\\pi^3(2k+1)^3}\\cos (\\pi (2k+1)ct) \\sin (\\pi(2k+1)x)."


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog