Write a source code of object detection from any of the videos.
import cv2
import numpy as np
import time
# Load the YOLO model
net = cv2.dnn.readNet("./weights/yolov3-tiny.weights", "./configuration/yolov3-tiny.cfg")
classes = []
with open("./configuration/coco.names", "r") as f:
classes = [line.strip() for line in f.readlines()]
layer_names = net.getLayerNames()
output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()]
colors = np.random.uniform(0, 255, size=(len(classes), 3))
# Load webcam
cap = cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
starting_time = time.time()
frame_id = 0
while True:
# Read webcam
_, frame = cap.read()
frame_id += 1
height, width, channels = frame.shape
# Detecting objects
blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)
net.setInput(blob)
outs = net.forward(output_layers)
# Visualising data
class_ids = []
confidences = []
boxes = []
for out in outs:
for detection in out:
scores = detection[5:]
class_id = np.argmax(scores)
confidence = scores[class_id]
if confidence > 0.1:
# Object detected
center_x = int(detection[0] * width)
center_y = int(detection[1] * height)
w = int(detection[2] * width)
h = int(detection[3] * height)
# Rectangle coordinates
x = int(center_x - w / 2)
y = int(center_y - h / 2)
boxes.append([x, y, w, h])
confidences.append(float(confidence))
class_ids.append(class_id)
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.8, 0.3)
for i in range(len(boxes)):
if i in indexes:
x, y, w, h = boxes[i]
label = str(classes[class_ids[i]])
confidence = confidences[i]
color = colors[class_ids[i]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
cv2.putText(frame, label + " " + str(round(confidence, 2)), (x, y + 30), font, 3, color, 3)
elapsed_time = time.time() - starting_time
fps = frame_id / elapsed_time
cv2.putText(frame, "FPS: " + str(round(fps, 2)), (40, 670), font, .7, (0, 255, 255), 1)
cv2.putText(frame, "press [esc] to exit", (40, 690), font, .45, (0, 255, 255), 1)
cv2.imshow("Image", frame)
key = cv2.waitKey(1)
if key == 27:
print("[button pressed] ///// [esc].")
print("[feedback] ///// Videocapturing succesfully stopped")
break
cap.release()
cv2.destroyAllWindows()
The requirements of the question was about copy any source code from external source. I have taken the code from https://itsourcecode.com/free-projects/python-projects/real-time-object-detection-opencv-python-with-source-code/ site
Comments
Leave a comment