Max Contiguous Subarray
Given a list of integers, write a program to identify the contiguous sub-list that has the largest sum and print the sum. Any non-empty slice of the list with step size 1 can be considered as a contiguous sub-list.Input
The input will contain space-separated integers, denoting the elements of the list.Output
The output should be an integer.Explanation
For example, if the given list is [2, -4, 5, -1, 2, -3], then all the possible contiguous sub-lists will be,
[2]
[2, -4]
[2, -4, 5]
[2, -4, 5, -1]
[2, -4, 5, -1, 2]
[2, -4, 5, -1, 2, -3]
[-4]
[-4, 5]
[-4, 5, -1]
[-4, 5, -1, 2]
[-4, 5, -1, 2, -3]
[5]
[5, -1]
[5, -1, 2]
[5, -1, 2, -3]
[-1]
[-1, 2]
[-1, 2, -3]
[2]
[2, -3]
[-3]
Among the above contiguous sub-lists, the contiguous sub-list [5, -1, 2] has the largest sum which is 6.
Sample Input 1
2 -4 5 -1 2 -3
Sample Output 1
6
Sample Input 2
-2 -3 4 -1 -2 1 5 -3
Sample Output 2
7
numbers = [int(item) for item in input().split()]
maxSum = 0
maxTemp = 0
for i in range(0, len(numbers)):
maxTemp += numbers[i]
if maxTemp < 0:
maxTemp = 0
elif (maxSum < maxTemp):
maxSum = maxTemp
print(f'{maxSum}')
Comments
Leave a comment