Recall that a full binary tree is a binary tree where each level of the tree has the maximum
number of nodes possible.
a. If the level of the root of a non-empty full binary tree is level 1, the level of the root's
children is level 2, etc., how many nodes are on level i, i ≥ 1?
b. If a non-empty full binary tree has n levels (or a height of n), how many nodes does the
tree have in total? Express your answer in closed form (i.e. do not use "..." in your final
answer).
c. Prove that the number of leaves in a non-empty full binary tree is 1 more than the number
of non-leaves. When you prove this, don't just show an example. Write your proof in
general for ANY non-empty full binary tree.
#include <iostream>
using namespace std;
struct node{
int value;
node *left;
node *right;
};
class btree{
public:
btree();
~btree();
void insert(int key);
node *search(int key);
void destroy_tree();
void inorder_print();
void postorder_print();
void preorder_print();
private:
void destroy_tree(node *leaf);
void insert(int key, node *leaf);
node *search(int key, node *leaf);
void inorder_print(node *leaf);
void postorder_print(node *leaf);
void preorder_print(node *leaf);
node *root;
};
btree::btree(){
root = NULL;
}
btree::~btree(){
destroy_tree();
}
void btree::destroy_tree(node *leaf){
if(leaf != NULL){
destroy_tree(leaf->left);
destroy_tree(leaf->right);
delete leaf;
}
}
void btree::insert(int key, node *leaf){
if(key < leaf->value){
if(leaf->left != NULL){
insert(key, leaf->left);
}else{
leaf->left = new node;
leaf->left->value = key;
leaf->left->left = NULL;
leaf->left->right = NULL;
}
}else if(key >= leaf->value){
if(leaf->right != NULL){
insert(key, leaf->right);
}else{
leaf->right = new node;
leaf->right->value = key;
leaf->right->right = NULL;
leaf->right->left = NULL;
}
}
}
void btree::insert(int key){
if(root != NULL){
insert(key, root);
}else{
root = new node;
root->value = key;
root->left = NULL;
root->right = NULL;
}
}
node *btree::search(int key, node *leaf){
if(leaf != NULL){
if(key == leaf->value){
return leaf;
}
if(key < leaf->value){
return search(key, leaf->left);
}else{
return search(key, leaf->right);
}
}else{
return NULL;
}
}
node *btree::search(int key){
return search(key, root);
}
void btree::destroy_tree(){
destroy_tree(root);
}
void btree::inorder_print(){
inorder_print(root);
cout << "\n";
}
void btree::inorder_print(node *leaf){
if(leaf != NULL){
inorder_print(leaf->left);
cout << leaf->value << ",";
inorder_print(leaf->right);
}
}
void btree::postorder_print(){
postorder_print(root);
cout << "\n";
}
void btree::postorder_print(node *leaf){
if(leaf != NULL){
inorder_print(leaf->left);
inorder_print(leaf->right);
cout << leaf->value << ",";
}
}
void btree::preorder_print(){
preorder_print(root);
cout << "\n";
}
void btree::preorder_print(node *leaf){
if(leaf != NULL){
cout << leaf->value << ",";
inorder_print(leaf->left);
inorder_print(leaf->right);
}
}
int main(){
//btree tree;
btree *tree = new btree();
tree->insert(10);
tree->insert(6);
tree->insert(14);
tree->insert(5);
tree->insert(8);
tree->insert(11);
tree->insert(18);
tree->preorder_print();
tree->inorder_print();
tree->postorder_print();
delete tree;
}
Comments
Leave a comment