Answer to Question #260078 in Algorithms for kriti

Question #260078

Prove weather following statements are true or false.

  1. 7n3+n2 ≠ Ω(n4)
  2. 9n + 3 = O(n2)
  3. n*lgn + 8n2 = Ω(n3)
  4. 2n + n3 + 1 = Ө(n3)
1
Expert's answer
2021-11-04T11:44:39-0400

f(n)=O(g(n))f(n)=O(g(n)) if there exists a positive real number M and a real number n0 such that

f(n)Mg(n)|f(n)|\le Mg(n) for nn0n\ge n_0

f(n)=Ω(g(n))f(n)=\Omega(g(n)) if there exists a positive real number M and a real number n0 such that

f(n)Mg(n)|f(n)|\ge Mg(n) for nn0n\ge n_0

f(n)=θ(g(n))f(n)=\theta(g(n)) if there exists a positive real numbers M1 and M2 and a real number n0 such that

M1g(n)f(n)M2g(n)M_1g(n)\le|f(n)|\le M_2g(n) for nn0n\ge n_0


1.

7n3+n28n37n^3+n^2\le 8n^3

8n48n37n3+n28n^4\ge 8n^3\ge7n^3+n^2


2.

9n+312n9n+3\le 12n

12n212n9n+312n^2\ge 12n \ge 9n+3


3.

n3nlgn+8n2n^3\le nlgn+8n^2


4.

n32n+n3+14n3n^3\le 2n+n^3+1\le 4n^3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment