f(n)=O(g(n)) if there exists a positive real number M and a real number n0 such that
∣f(n)∣≤Mg(n) for n≥n0
f(n)=Ω(g(n)) if there exists a positive real number M and a real number n0 such that
∣f(n)∣≥Mg(n) for n≥n0
f(n)=θ(g(n)) if there exists a positive real numbers M1 and M2 and a real number n0 such that
M1g(n)≤∣f(n)∣≤M2g(n) for n≥n0
1.
7n3+n2≤8n3
8n4≥8n3≥7n3+n2
2.
9n+3≤12n
12n2≥12n≥9n+3
3.
n3≤nlgn+8n2
4.
n3≤2n+n3+1≤4n3
Comments
Leave a comment