Arrange the following growth functions in increasing order of growth:
O(n1.5), O(2n), O (nlogn), O(logn), O(n3), O() ,O(),O()
The given growth function,
O(n1.5),O(2n),O(nlogn),O(logn),O(n3)O(n^{1.5}), O(2n), O (nlogn), O(logn), O(n^3)O(n1.5),O(2n),O(nlogn),O(logn),O(n3)
Again,
O(n32),O(2n),O(nlogn),O(logn),O(n3)O(n^{\frac{3}{2}}), O(2n), O (nlogn), O(logn), O(n^3)O(n23),O(2n),O(nlogn),O(logn),O(n3)
Now,
As we know that, big O notation provides the upper bounds to the function,
O(n3)>O(n32)>O(2n)>O(lognn)>O(logn)O(n^3)>O(n^{\frac{3}{2}})>O(2n)>O(\log n^n)>O(\log n)O(n3)>O(n23)>O(2n)>O(lognn)>O(logn)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment