Answer to Question #218093 in Quantum Mechanics for Mohammed Ariful

Question #218093

** Estimate the energy splitting between the lowest two levels for an electron in a three-dimensional cube-shaped potential box with the side length 10 nm.

1◦ 1 meV

2◦ 10 meV

3◦ 100 meV

4◦ 0.11 eV

5◦ 0.22 eV

6◦ 1.12 eV


1
Expert's answer
2021-07-19T09:48:31-0400

Energy in ground state, E1=(1)2π222meL2E_1=\dfrac{(1)^2\pi^2\hbar^2}{2m_eL^2}

E1=π2(1.054×1034)22(9.1×1031)(10×109)2E_1=\dfrac{\pi^2(1.054\times10^{-34})^2}{2(9.1\times10^{-31})(10\times10^{-9})^2}

E1=6.022×1022 JE_1=6.022\times10^{-22}\space J


Energy in first excited state, E2=(2)2π222meL2=4×6.022×1022 JE_2=\dfrac{(2)^2\pi^2\hbar^2}{2m_eL^2}=4\times6.022\times10^{-22}\space J

Energy difference, ΔE=E2E1=3×6.022×1022 J\Delta E=E_2-E_1=3\times6.022\times10^{-22}\space J

ΔE=112.82×103 eV=0.11 eV\Delta E=112.82\times10^{-3}\space eV=0.11\space eV


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Asaf khan
29.05.24, 07:47

Very good work

Leave a comment