** Estimate the energy splitting between the lowest two levels for an electron in a three-dimensional cube-shaped potential box with the side length 10 nm.
1◦ 1 meV
2◦ 10 meV
3◦ 100 meV
4◦ 0.11 eV
5◦ 0.22 eV
6◦ 1.12 eV
Energy in ground state, E1=(1)2π2ℏ22meL2E_1=\dfrac{(1)^2\pi^2\hbar^2}{2m_eL^2}E1=2meL2(1)2π2ℏ2
E1=π2(1.054×10−34)22(9.1×10−31)(10×10−9)2E_1=\dfrac{\pi^2(1.054\times10^{-34})^2}{2(9.1\times10^{-31})(10\times10^{-9})^2}E1=2(9.1×10−31)(10×10−9)2π2(1.054×10−34)2
E1=6.022×10−22 JE_1=6.022\times10^{-22}\space JE1=6.022×10−22 J
Energy in first excited state, E2=(2)2π2ℏ22meL2=4×6.022×10−22 JE_2=\dfrac{(2)^2\pi^2\hbar^2}{2m_eL^2}=4\times6.022\times10^{-22}\space JE2=2meL2(2)2π2ℏ2=4×6.022×10−22 J
Energy difference, ΔE=E2−E1=3×6.022×10−22 J\Delta E=E_2-E_1=3\times6.022\times10^{-22}\space JΔE=E2−E1=3×6.022×10−22 J
ΔE=112.82×10−3 eV=0.11 eV\Delta E=112.82\times10^{-3}\space eV=0.11\space eVΔE=112.82×10−3 eV=0.11 eV
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Very good work
Comments
Very good work
Leave a comment