The Potential Step (E > U0):
(a) Express the reflection and transmission probabilities in terms of E and U0. What is the probability
that the incident particle will be reflected for the case U0 = 0.7 E?
(b) Obtain the probability density and the real and imaginary parts of the wavefunction for t = Ο/2 Ο .
Also, plot them.
Part a
The physics of a potential step for the case "E>U_0"
"U(x)=[_{+U_0}^0 \\space _{x>0}^{x<0}"
"u(x)=e^{ikx}+Re^{-ikx}"
"k=\\sqrt{\\frac{2mE}{\\hbar^2}}"
"u'(x)=Te^{-ik'x}"
"k'=\\sqrt{\\frac{2mE-U_0}{\\hbar^2}}"
Continuity wave function "=x=0" implies
"1+R=T"
"[ike^{ikx}-ikRe^{-ikx}]_{x=0}=[ik'Te^{ik'x}]_{x=0}"
"k(1-R)=k'(1+R)"
"(k+k')R=(k-k')"
"R= \\frac{k-k'}{k+k'}"
"T=1-R= \\frac{2k}{k+k'}"
"u(x)=[^{e^{ikx}} {\\frac{k-k'}{k+k'}}e^{-ikx}" "x<0"
"\\frac{2k}{k+k'}e^{ik'x}" "x>0"
"P_{reflection}=|R|^2=(\\frac{k-k'}{k+k'})^2"
"P_{transmission}=1-P_{reflection}=\\frac{4kk'}{(k+k')^2}"
The transmission probability goes to 1 "k=k'" (since there is no step)
The transmission probability goes for 0 "k'=0" (since the kinetic energy is zero)
Part b
"P(x,x+\u0394x)\u2248|\u03a8(x,t)|^2\u03b4x."
"P(x,x+\u0394x)=\u222b^{x+\u0394x}_x|\u03a8(x,t)|^2dx"
"P(\u2212\u221e,+\u221e)=\u222b^\u221e_{\u2212\u221e}|\u03a8(x,t)|^2dx=1."
"P(\u221e,+\u221e)=\u222b^\u221e_{\u2212\u221e}|C|2dx=1."
"P(x=0,L)=\u222b^L_0|C|^2dx=1."
"C=\\sqrt\\frac{1}{L}" where "L= \\frac{\\pi}{2}"
"P(x=0,L\/2)=\u222b^{L\/2}_0 |\\sqrt{\\frac{1}{\\frac{\\pi}{2}}}|^2"
"=(\\frac{1}{0.5 \\pi}) \\frac{0.5 \\pi}{2} = 0.25"
Comments
Leave a comment