V = α / x / V=\alpha/x/ V = α / x /
gaussian trial function
ψ = e x p ( − β x 2 ) \psi=exp(-\beta x^2) ψ = e x p ( − β x 2 )
Since this wave function is not normalized , first we will normalize this wave function.
∫ − ∞ ∞ ψ ∗ ψ d x = 2 A 2 ∫ 0 ∞ e x p ( − β x 2 ) d x = 1 \int ^\infty_{-\infty}\psi*\psi dx=2A^2 \int^\infty_0 exp(-\beta x^2)dx=1 ∫ − ∞ ∞ ψ ∗ ψ d x = 2 A 2 ∫ 0 ∞ e x p ( − β x 2 ) d x = 1
2 A 2 1 2 ( π 2 β ) 1 2 = 1 = A 2 = 2 β π 2A^2 \frac{1}{2}(\frac{\pi}{2\beta})^\frac{1}{2}=1=A^2=\sqrt{\frac{2\beta}{\pi}} 2 A 2 2 1 ( 2 β π ) 2 1 = 1 = A 2 = π 2 β
< V > = 2 α A 2 ∫ 0 ∞ x e − 2 β x 2 d x = = 2 α A 2 ( − 1 4 β e x p ( − 2 β x 2 ) ) / 0 ∞ = α A 2 2 β <V>=2\alpha A^2\int^\infty_0 xe^{-2\beta x^2}dx==2\alpha A^2(-\frac{1}{4\beta}exp(-2\beta x^2))/_0^\infty=\frac{\alpha A^2}{2\beta} < V >= 2 α A 2 ∫ 0 ∞ x e − 2 β x 2 d x == 2 α A 2 ( − 4 β 1 e x p ( − 2 β x 2 )) / 0 ∞ = 2 β α A 2
= α 2 β 2 β π = α 2 β π =\frac{\alpha}{2\beta} \sqrt{\frac{2\beta}{\pi}}=\frac{\alpha}{\sqrt{2\beta \pi}} = 2 β α π 2 β = 2 β π α
< H > = < T > + < V > = h 2 β 2 m + α 2 β π <H>=<T>+<V>= \frac{h^2\beta}{2m}+\frac{\alpha}{\sqrt{2\beta\pi}} < H >=< T > + < V >= 2 m h 2 β + 2 β π α
To determine β \beta β
δ < H > δ β = h 2 2 m − 1 2 α 2 π β − 3 / 2 = 0 \frac{\delta <H>}{\delta \beta}=\frac{h^2}{2m}-\frac{1}{2}\frac{\alpha}{\sqrt{2\pi }} \beta ^{-3/2}=0 δ β δ < H > = 2 m h 2 − 2 1 2 π α β − 3/2 = 0
β 3 / 2 = α 2 π m h 2 = β = ( m α 2 π h 2 ) 2 / 3 \beta^{3/2}=\frac{\alpha}{\sqrt{2\pi}} \frac{m}{h^2}=\beta=(\frac{m\alpha}{\sqrt{2\pi h^2}})^{2/3} β 3/2 = 2 π α h 2 m = β = ( 2 π h 2 m α ) 2/3
E m i n = < H > m i n = h 2 2 m ( m α 2 π h 2 ) 2 / 3 + α 2 π ( 2 π h 2 m α ) 1 / 3 E_{min}=<H>_{min}=\frac{h^2}{2m} (\frac{m\alpha}{\sqrt{2\pi h^2}})^{2/3} +\frac{\alpha}{\sqrt{2\pi}}(\frac{\sqrt{2\pi h^2}}{m\alpha}) ^{1/3} E min =< H > min = 2 m h 2 ( 2 π h 2 m α ) 2/3 + 2 π α ( m α 2 π h 2 ) 1/3
Comments