Question #203739

Calculate the ground state energy for delta function potential by making use of variational principle.


1
Expert's answer
2021-06-07T09:34:41-0400

V=α/x/V=\alpha/x/

gaussian trial function

ψ=exp(βx2)\psi=exp(-\beta x^2)

Since this wave function is not normalized , first we will normalize this wave function.

ψψdx=2A20exp(βx2)dx=1\int ^\infty_{-\infty}\psi*\psi dx=2A^2 \int^\infty_0 exp(-\beta x^2)dx=1

2A212(π2β)12=1=A2=2βπ2A^2 \frac{1}{2}(\frac{\pi}{2\beta})^\frac{1}{2}=1=A^2=\sqrt{\frac{2\beta}{\pi}}

<V>=2αA20xe2βx2dx==2αA2(14βexp(2βx2))/0=αA22β<V>=2\alpha A^2\int^\infty_0 xe^{-2\beta x^2}dx==2\alpha A^2(-\frac{1}{4\beta}exp(-2\beta x^2))/_0^\infty=\frac{\alpha A^2}{2\beta}

=α2β2βπ=α2βπ=\frac{\alpha}{2\beta} \sqrt{\frac{2\beta}{\pi}}=\frac{\alpha}{\sqrt{2\beta \pi}}

<H>=<T>+<V>=h2β2m+α2βπ<H>=<T>+<V>= \frac{h^2\beta}{2m}+\frac{\alpha}{\sqrt{2\beta\pi}}

To determine β\beta

δ<H>δβ=h22m12α2πβ3/2=0\frac{\delta <H>}{\delta \beta}=\frac{h^2}{2m}-\frac{1}{2}\frac{\alpha}{\sqrt{2\pi }} \beta ^{-3/2}=0

β3/2=α2πmh2=β=(mα2πh2)2/3\beta^{3/2}=\frac{\alpha}{\sqrt{2\pi}} \frac{m}{h^2}=\beta=(\frac{m\alpha}{\sqrt{2\pi h^2}})^{2/3}

Emin=<H>min=h22m(mα2πh2)2/3+α2π(2πh2mα)1/3E_{min}=<H>_{min}=\frac{h^2}{2m} (\frac{m\alpha}{\sqrt{2\pi h^2}})^{2/3} +\frac{\alpha}{\sqrt{2\pi}}(\frac{\sqrt{2\pi h^2}}{m\alpha}) ^{1/3}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS