Use the variational principle to obtain an upper limit to ground state energy of a particle in one dimensional box.
=<H>=<ψ/H/ψ>=∫−∞∞ψ∗(Hψ)dz= <H>=<\psi/H/\psi>=\int_{-\infty}^{\infty}\psi*(H\psi)dz=<H>=<ψ/H/ψ>=∫−∞∞ψ∗(Hψ)dz
H=eBxmSy=ehˉBym[10 0−i]/ψ>=[sinθcosθ]H=\frac{eB_x}{m}Sy=\frac{e\bar{h}By}{m}[_1^0 \space _0^{-i}] /\psi>=[^{cos\theta}_{sin\theta}]H=meBxSy=mehˉBy[10 0−i]/ψ>=[sinθcosθ]
So, <ψ/=[cosθsinθ]<\psi/=[cos\theta sin\theta]<ψ/=[cosθsinθ]
=<H>=<ψ/H/ψ/>=<H>=<\psi/H/\psi/>=<H>=<ψ/H/ψ/>
=[cosθsinθ][10 0−i][sinθcosθ]ehBym=[cos \theta sin \theta][_1^0 \space_0^{-i}][_{sin\theta}^{cos \theta}] \frac{ehBy}{m}=[cosθsinθ][10 0−i][sinθcosθ]mehBy
=[−icosθsinθ+sinθcosθ]ehBym=0=[-icos\theta sin\theta+sin \theta cos \theta]\frac{ehBy}{m}=0=[−icosθsinθ+sinθcosθ]mehBy=0
∴<H>=<ψ/μ/ψ>=0\therefore <H>= <\psi/\mu/\psi>=0∴<H>=<ψ/μ/ψ>=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments