Answer to Question #152933 in Quantum Mechanics for adnan

Question #152933

A wave function is given to be 𝜓(𝑥) = 𝑁( 𝑥 /𝑥0 )^ 𝑛𝑒 −𝑥/𝑥0, 𝑁, 𝑛, 𝑥0 𝑎𝑟𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠 From Schrodinger wave equation find potential V(x) and the energy E for which 𝜓(𝑥) is an Eigen function.


1
Expert's answer
2020-12-28T10:27:18-0500

Let's write Schrodinger equation applied to "\\psi(x)" :

"-\\frac{\\hbar^2}{2m} \\psi'' +V\\psi = E\\psi"

First calculate "\\psi''" :

"\\psi''=N e^{-x\/x_0} (\\frac{n(n-1)}{x_0^2} (\\frac{x}{x_0})^{n-2}-2\\frac{n}{x_0^2}(\\frac{x}{x_0})^{n-1}+\\frac{1}{x_0^2}(\\frac{x}{x_0})^n)"

"\\psi''=Ne^{-x\/x_0} (\\frac{x}{x_0})^n (\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2}) = \\psi (\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})"

Now we substitue this expression into the Schrodinger equation :

"(\\frac{-\\hbar^2}{2m}(\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})+V)\\psi = E\\psi"

As "\\psi\\neq 0" everywhere except for "x=0", we can simplify by "\\psi" and find

"\\frac{-\\hbar^2}{2m}(\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})+V = E"

"V=E+\\frac{\\hbar^2}{2m}(\\frac{1}{x_0^2}-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})"

As "V\\to 0" when "|x|\\to+\\infty" , we find that

"E=-\\frac{\\hbar^2}{2mx_0^2}"

"V=\\frac{\\hbar^2}{2m}(-\\frac{2n}{xx_0}+\\frac{n(n-1)}{x^2})"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment