Answer
n-th state of one dim linear harmonic oscilator is given by
∣n>=(α2nn!π)1/2e−α2x2/2Hn(αx)|n>=(\frac{\alpha}{2^n n! \sqrt{\pi}}) ^{1/2}e^{-\alpha^2 x^2/2} H_n(\alpha x)∣n>=(2nn!πα)1/2e−α2x2/2Hn(αx)
Now
Expectation value of momentum^4
<p4>=<n∣p4n><n∣n><p^4>=\frac{<n|p^4n>}{<n|n>}<p4>=<n∣n><n∣p4n>
Putting
P=−iℏ2mP=\frac{-i\hbar}{2m}P=2m−iℏ And state n
So expectation value is
<p4>=(ℏmω2)2(6n2+6n+3)<p^4>=(\frac{\hbar m\omega}{2}) ^2(6n^2+6n+3)<p4>=(2ℏmω)2(6n2+6n+3)
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments