R = 1.800 MΩ
The constant of capacitor = RC
Total charging time = 5RC
25 hr = 5RC
"25 \\times 60 \\times 60 = 5 \\times 1.8 \\times 10^6 \\times C"
"C = \\frac{25 \\times 60 \\times 60}{5 \\times 1.8 \\times 10^6}"
C = 10 mF
This is the capacitance of the combination.
"h\u03c5 = \\frac{1}{2}m\u03bd^2 + h\u03c5_0"
"\\frac{1}{2}m\u03bd^2 = h(\u03c5 \u2013 \u03c5_0) = v_0e"
λ = 150 nm
"\u03c5_0 = 5.53 \\times 10^{14} \\; Hz"
"\u03c5_0 = \\frac{C}{\u03bb}"
"\u03c5_0 = \\frac{3 \\times 10^8}{150 \\times 10^{-9}} = 20 \\times 10^{14}\\; Hz"
"v_0e = 6.63 \\times 10^{-34}(20 - 5.53)\\times 10^{14}"
"v_0 = \\frac{9.58 \\times 10^{-19}}{1.6 \\times 10^{-19}}"
"v_0 = 6\\;V"
Charging voltage of capacitor:
"V_c = V_s(1 - e^{-\\frac{Z}{RC}})"
"V_c = 6(1 - e^{\\frac{8 \\times 60 \\times 60}{3 \\times 10^3 \\times 10}})"
"V_c = 6(1 - e^{0.96})"
"V_c = 3.7 \\;V"
Comments
Leave a comment