. In Dirac’s theory, the probability current density is defined by the relation j(r, t) = CΨ* αΨ ,
where Ψ is the four component wave vector. Write the relations for jx, jy, jz in terms of the
component of Ψ i.e.
J(r, t) = Ψ*α Ψ ; jx = C Ψ* αx Ψ
The answer is in the next formula:
"j_1(x_\\mu)=\\Psi^*_0\\Psi_3+\\Psi^*_1\\Psi_2+\\Psi^*_2\\Psi_1+\\Psi^*_3\\Psi_0"
"j_2(x_\\mu)=i\\Psi^*_0\\Psi_3+i\\Psi^*_1\\Psi_2+i\\Psi^*_2\\Psi_1-i\\Psi^*_3\\Psi_0"
"j_3(x_\\mu)=-\\Psi^*_1\\Psi_3+\\Psi^*_0\\Psi_2-\\Psi^*_3\\Psi_1+\\Psi^*_2\\Psi_0"
Note"\\Psi^*_i" is the complex conjugated component of the 4 vector of Dirac.
Notably;
"\\Psi_i=\\Psi_i(x\\mu),\\Psi^*_i=\\Psi^*_i(x_\\mu), i=0..3"
Comments
Leave a comment