Let's consider the Hamiltonian of the hydrogen atom (all constants are 1):
"\\widehat H = \\frac{\\widehat p^2}{2m} + \\frac{1}{\\widehat r}"
In coordinate representation of this operators looks like:
"\\widehat p = -i\\nabla\\newline \\frac{1}{\\widehat r} = \\frac{1}{\\sqrt(x^2_1 + x^2_2+x^2_3)}"
Schrodinger equation in this case will be:
"\\widehat H |\\Psi> = E|\\Psi>\\newline \\left(-\\frac{\\Delta}{2m} + \\frac{1}{\\sqrt(x^2_1 + x^2_2+x^2_3)}\\right)\\Psi(\\vec x) = E\\Psi(\\vec x)"
We will search the solution of the one, by assuming such decomposition:
"\\Psi(\\vec x) = R(r)Y(\\theta,\\phi)"
The Laplasian could be represented in such way:
"\\Delta = \\frac{1}{r}\\frac{\\partial}{\\partial r}\\left( \\frac{1}{r}\\frac{\\partial}{\\partial r}\\right) + \\frac{1}{r^2}\\Delta_\\theta,_\\phi"
Taking into account this facts we can write the new equation:
"-\\frac{1}{R}\\frac{1}{r}\\frac{\\partial}{\\partial r}\\left( \\frac{1}{r}\\frac{\\partial R}{\\partial r}\\right) -\\frac{1}{Y} \\frac{1}{r^2}\\Delta_\\theta,_\\phi(Y) + \\frac{1}{r} = E\\newline \\left(-\\frac{r}{R}\\frac{\\partial}{\\partial r}\\left( \\frac{1}{r}\\frac{\\partial R}{\\partial r}\\right)+ r - Er^2\\right) -\\frac{1}{Y} \\Delta_\\theta,_\\phi(Y) = 0"
The solution of the problem:
"\\Delta_\\theta,_\\phi(Y_l,_m) = l(l+1)Y_l,_m"
So, there is Legendre polynoms: "Y_l,_m=P_l,_m(cos(\\theta))" . This solution depends from "\\phi" also.
It's spherical harmoncs for sphere for "r=1" . Now, the previous equation have taken the view:
"\\left(-\\frac{r}{R}\\frac{\\partial}{\\partial r}\\left( \\frac{1}{r}\\frac{\\partial R}{\\partial r}\\right)+ r - Er^2 - l(l+1)\\right) = 0"
This is equation for Lauguerre polynomials.
Comments
Leave a comment