Let's consider the Hamiltonian of the hydrogen atom (all constants are 1):
H ^ = p ^ 2 2 m + 1 r ^ \widehat H = \frac{\widehat p^2}{2m} + \frac{1}{\widehat r} H = 2 m p 2 + r 1
In coordinate representation of this operators looks like:
p ^ = − i ∇ 1 r ^ = 1 ( x 1 2 + x 2 2 + x 3 2 ) \widehat p = -i\nabla\newline \frac{1}{\widehat r} = \frac{1}{\sqrt(x^2_1 + x^2_2+x^2_3)} p = − i ∇ r 1 = ( x 1 2 + x 2 2 + x 3 2 ) 1
Schrodinger equation in this case will be:
H ^ ∣ Ψ > = E ∣ Ψ > ( − Δ 2 m + 1 ( x 1 2 + x 2 2 + x 3 2 ) ) Ψ ( x ⃗ ) = E Ψ ( x ⃗ ) \widehat H |\Psi> = E|\Psi>\newline \left(-\frac{\Delta}{2m} + \frac{1}{\sqrt(x^2_1 + x^2_2+x^2_3)}\right)\Psi(\vec x) = E\Psi(\vec x) H ∣Ψ >= E ∣Ψ > ( − 2 m Δ + ( x 1 2 + x 2 2 + x 3 2 ) 1 ) Ψ ( x ) = E Ψ ( x )
We will search the solution of the one, by assuming such decomposition:
Ψ ( x ⃗ ) = R ( r ) Y ( θ , ϕ ) \Psi(\vec x) = R(r)Y(\theta,\phi) Ψ ( x ) = R ( r ) Y ( θ , ϕ )
The Laplasian could be represented in such way:
Δ = 1 r ∂ ∂ r ( 1 r ∂ ∂ r ) + 1 r 2 Δ θ , ϕ \Delta = \frac{1}{r}\frac{\partial}{\partial r}\left( \frac{1}{r}\frac{\partial}{\partial r}\right) + \frac{1}{r^2}\Delta_\theta,_\phi Δ = r 1 ∂ r ∂ ( r 1 ∂ r ∂ ) + r 2 1 Δ θ , ϕ
Taking into account this facts we can write the new equation:
− 1 R 1 r ∂ ∂ r ( 1 r ∂ R ∂ r ) − 1 Y 1 r 2 Δ θ , ϕ ( Y ) + 1 r = E ( − r R ∂ ∂ r ( 1 r ∂ R ∂ r ) + r − E r 2 ) − 1 Y Δ θ , ϕ ( Y ) = 0 -\frac{1}{R}\frac{1}{r}\frac{\partial}{\partial r}\left( \frac{1}{r}\frac{\partial R}{\partial r}\right) -\frac{1}{Y} \frac{1}{r^2}\Delta_\theta,_\phi(Y) + \frac{1}{r} = E\newline \left(-\frac{r}{R}\frac{\partial}{\partial r}\left( \frac{1}{r}\frac{\partial R}{\partial r}\right)+ r - Er^2\right) -\frac{1}{Y} \Delta_\theta,_\phi(Y) = 0 − R 1 r 1 ∂ r ∂ ( r 1 ∂ r ∂ R ) − Y 1 r 2 1 Δ θ , ϕ ( Y ) + r 1 = E ( − R r ∂ r ∂ ( r 1 ∂ r ∂ R ) + r − E r 2 ) − Y 1 Δ θ , ϕ ( Y ) = 0
The solution of the problem:
Δ θ , ϕ ( Y l , m ) = l ( l + 1 ) Y l , m \Delta_\theta,_\phi(Y_l,_m) = l(l+1)Y_l,_m Δ θ , ϕ ( Y l , m ) = l ( l + 1 ) Y l , m
So, there is Legendre polynoms: Y l , m = P l , m ( c o s ( θ ) ) Y_l,_m=P_l,_m(cos(\theta)) Y l , m = P l , m ( cos ( θ )) . This solution depends from ϕ \phi ϕ also.
It's spherical harmoncs for sphere for r = 1 r=1 r = 1 . Now, the previous equation have taken the view:
( − r R ∂ ∂ r ( 1 r ∂ R ∂ r ) + r − E r 2 − l ( l + 1 ) ) = 0 \left(-\frac{r}{R}\frac{\partial}{\partial r}\left( \frac{1}{r}\frac{\partial R}{\partial r}\right)+ r - Er^2 - l(l+1)\right) = 0 ( − R r ∂ r ∂ ( r 1 ∂ r ∂ R ) + r − E r 2 − l ( l + 1 ) ) = 0
This is equation for Lauguerre polynomials.
Comments