Question #124996
Show that
i. σ’x2 = σ’y2 = σ’z(2) = 1
ii. [σ’x , αx ] = 0 ,
[σ’x , αy ] = 2i αz &
[σ’x , αz] = -2i αy
1
Expert's answer
2020-07-06T17:01:40-0400

In order to prove this statements, we will use such notations:

σx=(0110),σy=(0ii0),σz=(1001)\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

As we can see the first statement is right:

(0110)(0110)=(1001)=I\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I

(0ii0)(0ii0)=(1001)=I\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I

(1001)(1001)=(1001)=I\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I

The commutator of the two matrices is:

[σx,σy]=σxσyσyσx=(0110)(0ii0)(0ii0)(0110)=2i(1001)\left[\sigma_x,\sigma_y\right] = \sigma_x\sigma_y - \sigma_y\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} - \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = 2i\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}

So we have proved the second statement

Let's finish our work and prove the last statement:

[σx,σz]=σxσzσzσx=(0110)(1001)(1001)(0110)=2i(0ii0)\left[\sigma_x,\sigma_z\right] = \sigma_x\sigma_z - \sigma_z\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = -2i\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS