Answer to Question #89130 in Physics for Shivam Nishad

Question #89130
For a weakly damped harmonic oscillator, the
instantaneous displacement is given by
x(t) = ao exp (-bt) cos (wd t + phy).
Calculate its average energy.
1
Expert's answer
2019-05-15T10:08:24-0400
"E=K+U=0.5m(\\frac{dx}{dt})^2+0.5kx^2"

"\\frac{dx}{dt}=-a_o \\exp{(-bt)} [b \\cos{(w_d t + \\phi)}+w_d \\sin{(w_d t + \\phi)}]"

Thus

"K=0.5ma_0^2e^{-2bt} [b^2 \\cos^2{(w_d t + \\phi)}+w_d^2 \\sin^2{(w_d t + \\phi)}+bw_d \\sin{2(w_d t + \\phi)}]"

We have:


"k=mw_d^2"


"U=0.5ma_0^2w_d^2 e^{-2bt} \\cos^2{(w_d t + \\phi)}""\\langle E \\rangle=0.5ma_0^2 e^{-2bt} \\langle A(t) \\rangle"

"A(t)=(b^2+w_d^2) \\cos^2{(w_d t + \\phi)}+w_d^2 \\sin^2{(w_d t + \\phi)}+bw_d \\sin{2(w_d t + \\phi)}"

"\\langle A(t) \\rangle=0.5((b^2+w_d^2)+w_d^2)"

As for weakly damped harmonic oscillator


"b\\ll w_d"

"\\langle A(t) \\rangle=w_d^2"

"\\langle E \\rangle=0.5ma_0^2w_d^2 e^{-2bt} =E_0e^{-2bt}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS