"\\frac{dx}{dt}=-a_o \\exp{(-bt)} [b \\cos{(w_d t + \\phi)}+w_d \\sin{(w_d t + \\phi)}]"
Thus
"K=0.5ma_0^2e^{-2bt} [b^2 \\cos^2{(w_d t + \\phi)}+w_d^2 \\sin^2{(w_d t + \\phi)}+bw_d \\sin{2(w_d t + \\phi)}]"We have:
"A(t)=(b^2+w_d^2) \\cos^2{(w_d t + \\phi)}+w_d^2 \\sin^2{(w_d t + \\phi)}+bw_d \\sin{2(w_d t + \\phi)}"
"\\langle A(t) \\rangle=0.5((b^2+w_d^2)+w_d^2)"
As for weakly damped harmonic oscillator
"\\langle A(t) \\rangle=w_d^2"
"\\langle E \\rangle=0.5ma_0^2w_d^2 e^{-2bt} =E_0e^{-2bt}"
Comments
Leave a comment