"x_1(t)=4 sin(\\omega t)""x_2(t)=3 sin(\\omega t + \\pi \/ 2) = 3 cos(\\omega t)""x(t)=x_1(t)+x_2(t)=4sin(\\omega t)+3cos(\\omega t)=A \\sdot sin(\\omega t +\\phi)" where
"A=\\sqrt{3^2+4^2}=5""\\phi=arcsin(3\/A)=arccos(4\/A)" so, the resultant oscillation:
"x(t)=5 sin(\\omega t + arcsin(3\/5))" second option:
"x_2\u200b(t)=3sin(\u03c9t-\u03c0\/2)=-3cos(\u03c9t)""A=\\sqrt{(-3)^2+4^2}=5""\\phi=arcsin(-3\/A)=-arcsin(3\/A)" then, the resultant oscillation:
"x(t)=5 sin(\\omega t - arcsin(3\/5))"
Comments
Leave a comment