Since the object has a relativistic velocity we need to find the relativistic total energy as follows:
"E=\\gamma mc^2=\\dfrac{mc^2}{\\sqrt{1-\\dfrac{v^2}{c^2}}}."We can find the velocity of the object as follows:
"p=mv,""v=\\dfrac{p}{m}=\\dfrac{11.5\\times10^6\\ \\dfrac{kg\\times m}{s}}{6.3\\ kg}=18.25\\times10^5\\ \\dfrac{m}{s}."Then, we have:
"E=\\dfrac{6.3\\ kg\\times(3\\times10^8\\ \\dfrac{m}{s})^2}{\\sqrt{1-\\dfrac{(18.25\\times10^5\\ \\dfrac{m}{s})^2}{(3\\times10^8\\ \\dfrac{m}{s})^2}}}=5.67\\times10^{17}\\ J."
Comments
Leave a comment