Since the object has a relativistic velocity we need to find the relativistic total energy as follows:
E = γ m c 2 = m c 2 1 − v 2 c 2 . E=\gamma mc^2=\dfrac{mc^2}{\sqrt{1-\dfrac{v^2}{c^2}}}. E = γm c 2 = 1 − c 2 v 2 m c 2 . We can find the velocity of the object as follows:
p = m v , p=mv, p = m v , v = p m = 11.5 × 1 0 6 k g × m s 6.3 k g = 18.25 × 1 0 5 m s . v=\dfrac{p}{m}=\dfrac{11.5\times10^6\ \dfrac{kg\times m}{s}}{6.3\ kg}=18.25\times10^5\ \dfrac{m}{s}. v = m p = 6.3 k g 11.5 × 1 0 6 s k g × m = 18.25 × 1 0 5 s m . Then, we have:
E = 6.3 k g × ( 3 × 1 0 8 m s ) 2 1 − ( 18.25 × 1 0 5 m s ) 2 ( 3 × 1 0 8 m s ) 2 = 5.67 × 1 0 17 J . E=\dfrac{6.3\ kg\times(3\times10^8\ \dfrac{m}{s})^2}{\sqrt{1-\dfrac{(18.25\times10^5\ \dfrac{m}{s})^2}{(3\times10^8\ \dfrac{m}{s})^2}}}=5.67\times10^{17}\ J. E = 1 − ( 3 × 1 0 8 s m ) 2 ( 18.25 × 1 0 5 s m ) 2 6.3 k g × ( 3 × 1 0 8 s m ) 2 = 5.67 × 1 0 17 J .
Comments