Question #275953

One section of a pipe is 2.5cm in diameter, horizontal, and 1m above ground level. This section is connected to a second horizontal section at ground level which is 5cm in diameter. In the elevated section, the velocity of flow of water is 2m/s and the pressure is 1.4×10sN/m². Calculate (a) the velocity of flow in the lower section (b) the pressure in the lower section,and (c) the rate of flow of water through the pipe in kilograms per seconds.

1
Expert's answer
2021-12-06T09:48:38-0500

(a) A1v1=A2v2(πd12/4)v1=(πd22/4)v2A_1v_1=A_2v_2\to(\pi d_1^2/4)v_1=(\pi d_2^2/4)v_2\to


d12v1=d22v2v2=d12v1/d22=0.02522/0.052=0.5 (m/s)d_1^2v_1=d_2^2v_2\to v_2=d_1^2v_1/d_2^2=0.025^2\cdot2/0.05^2=0.5\ (m/s)


(b) p1+ρgh1+ρv12/2=p2+ρgh2+ρv22/2p_1+\rho gh_1+\rho v_1^2/2=p_2+\rho gh_2+\rho v_2^2/2\to


p2=p1+ρgh1+ρv12/2ρgh2ρv22/2=p_2=p_1+\rho gh_1+\rho v_1^2/2-\rho gh_2-\rho v_2^2/2=


=14+10009.81+100022/2010000.52/2=11689 (Pa)=14+1000\cdot9.8\cdot 1+1000\cdot2^2/2-0-1000\cdot 0.5^2/2=11689\ (Pa)


(c) Q=A2ρv2=(πd22/4)ρv2=Q=A_2\cdot \rho\cdot v_2=(\pi d_2^2/4)\cdot \rho \cdot v_2=


=(3.140.052/4)10000.5=0.981 (kg/s)=(3.14\cdot0.05^2/4)\cdot1000\cdot0.5=0.981\ (kg/s) or


Q=A1ρv1=(πd12/4)ρv1=Q=A_1\cdot \rho\cdot v_1=(\pi d_1^2/4)\cdot \rho \cdot v_1=


=(3.140.0252/4)10002=0.981 (kg/s)=(3.14\cdot0.025^2/4)\cdot1000\cdot2=0.981\ (kg/s)





Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS