Question #260740

A mass m = 4.5 kg is attached to a vertical spring with k = 200 N/m and is set into motion. (a) What is the frequency of the oscillation? (b) If the amplitude of the oscillation is 3.5 cm, what is the maximum value of the velocity? (c) How long does it take the mass to move from y = 1.5 cm to y = 2.5 cm? (d) If the mass is oscillating with a maximum speed of 45 m/s, what is the amplitude? (e) If the spring constant is increased by a factor of two and the maximum kinetic energy of the mass is the same, by what factor does the amplitude change?





1
Expert's answer
2021-11-04T10:15:19-0400

(a) The frequency of the oscillation can be found as follows:


f=12πkm,f=\dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}},f=12π200 Nm4.5 kg=1.06 Hz.f=\dfrac{1}{2\pi}\sqrt{\dfrac{200\ \dfrac{N}{m}}{4.5\ kg}}=1.06\ Hz.

(b) The maximum value of the velocity can be found as follows:


vmax=Aω=A2πf=0.035 m×2π×1.06 Hz=0.23 ms.v_{max}=A\omega=A2\pi f=0.035\ m\times2\pi\times1.06\ Hz=0.23\ \dfrac{m}{s}.


(c) Let's write y1y_1 and y2y_2:


y1=Asinωt1,y_1=Asin\omega t_1,y2=Asinωt2.y_2=Asin\omega t_2.

From these equations we can find t1t_1 and t2t_2:


t1=sin1(y1A)ω=sin1(y1A)2πf,t_1=\dfrac{sin^{-1}(\dfrac{y_1}{A})}{\omega}=\dfrac{sin^{-1}(\dfrac{y_1}{A})}{2\pi f},t2=sin1(y2A)ω=sin1(y2A)2πf.t_2=\dfrac{sin^{-1}(\dfrac{y_2}{A})}{\omega}=\dfrac{sin^{-1}(\dfrac{y_2}{A})}{2\pi f}.

Finally, we can find the time that the mass takes to move from y = 1.5 cm to y = 2.5 cm:

t=t2t1=sin1(y2A)sin1(y1A)2πf,t=t_2-t_1=\dfrac{sin^{-1}(\dfrac{y_2}{A})-sin^{-1}(\dfrac{y_1}{A})}{2\pi f},t=sin1(0.025 m0.035 m)sin1(0.015 m0.035 m)2π×1.06 Hz=0.053 s.t=\dfrac{sin^{-1}(\dfrac{0.025\ m}{0.035\ m})-sin^{-1}(\dfrac{0.015\ m}{0.035\ m})}{2\pi\times1.06\ Hz}=0.053\ s.

(d) We can find the amplutude as follows:


vmax=Aω,v_{max}=A\omega,A=vmaxω=vmax2πf=45 ms2π×1.06 Hz=6.75 m.A=\dfrac{v_{max}}{\omega}=\dfrac{v_{max}}{2\pi f}=\dfrac{45\ \dfrac{m}{s}}{2\pi\times1.06\ Hz}=6.75\ m.


(e) We know that the maximum kinetic energy of the mass is the same. It means that vmax=constv_{max}=const. Then, we can write:


vmax=Akm,v_{max}=A\sqrt{\dfrac{k}{m}},A=vmaxkm.A=\dfrac{v_{max}}{\sqrt{\dfrac{k}{m}}}.

If the spring constant is increased by a factor of two, we get:


Anew=vmax2km=A=vmax2km=12A.A_{new}=\dfrac{v_{max}}{\sqrt{\dfrac{2k}{m}}}=A=\dfrac{v_{max}}{\sqrt{2}\sqrt{\dfrac{k}{m}}}=\dfrac{1}{\sqrt{2}}A.

Therefore, the amplitude changes by the factor of 12.\dfrac{1}{\sqrt{2}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS