Answer to Question #260623 in Physics for Bash

Question #260623

A body start from rest and after 20 seconds acquired a velocity of 80m/s. It then moved with constant velocity for the next 10 seconds before coming to rest in a further 15 seconds.

Draw the velocity time graph and determine:

a) The total distance covered

b) The average speed

c) The acceleration

d) The retardation


1
Expert's answer
2021-11-04T10:17:24-0400

Let's draw the Velocity versus Time graph:



(a) The area under the Velocity vs. Time graph represents the total distance covered. Let's find the area under the graph:


d1=Arealeft triangle=12bh=12×20 s×80 ms=800 m,d_1=Area_{left\ triangle}=\dfrac{1}{2}bh=\dfrac{1}{2}\times20\ s\times80\ \dfrac{m}{s}=800\ m,d2=Arearectangle=ab=10 s×80 ms=800 m,d_2=Area_{rectangle}=ab=10\ s\times80\ \dfrac{m}{s}=800\ m,d3=Arearight triangle=12bh=12×15 s×80 ms=600 m,d_3=Area_{right\ triangle}=\dfrac{1}{2}bh=\dfrac{1}{2}\times15\ s\times80\ \dfrac{m}{s}=600\ m,dtot=d1+d2+d3=800 m+800 m+600 m=2200 m.d_{tot}=d_1+d_2+d_3=800\ m+800\ m+600\ m=2200\ m.

(b) The average speed can be found as follows:


vavg=dtotttot=2200 m45 s=48.9 ms.v_{avg}=\dfrac{d_{tot}}{t_{tot}}=\dfrac{2200\ m}{45\ s}=48.9\ \dfrac{m}{s}.

(c) We can find the acceleration of the body from the slope of the Velocity vs. Time graph:


a=Slope=ΔyΔx=80 ms0 ms20 s0 s=4.0 ms2.a=Slope=\dfrac{\Delta y}{\Delta x}=\dfrac{80\ \dfrac{m}{s}-0\ \dfrac{m}{s}}{20\ s - 0\ s}=4.0\ \dfrac{m}{s^2}.

(d) We can find the retardation of the body from the slope of the Velocity vs. Time graph:


a=Slope=ΔyΔx=0 ms80 ms45 s30 s=5.33 ms2.a=Slope=\dfrac{\Delta y}{\Delta x}=\dfrac{0\ \dfrac{m}{s}-80\ \dfrac{m}{s}}{45\ s - 30\ s}=-5.33\ \dfrac{m}{s^2}.

The sign minus means that the body decelerates.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment