Question #260272

derive;

Wnc=(½mvf2+mghf)-(½mv02+mgh0)


1
Expert's answer
2021-11-08T09:12:37-0500

For kinetic energy 


mdvxdt=Fxddt(mvx22)=Fxvxd(mvx22)=Fxdxm\frac{dv_x}{dt}=F_x\to\frac{d}{dt}(\frac{mv_x^2}{2})=F_xv_x \to d(\frac{mv_x^2}{2})=F_xdx\to


mvxf22mvx022=Fxdx\frac{mv_{xf}^2}{2}-\frac{mv_{x0}^2}{2}=\int F_xdx . In general mvf22mv022=Fdr\frac{mv_{f}^2}{2}-\frac{mv_{0}^2}{2}=\int \vec Fd\vec r


For potential energy


Fdr=EpxdxEpydyEpzdzFdr=dEp\vec Fd\vec r=-\frac{\partial E_p}{\partial x}dx-\frac{\partial E_p}{\partial y}dy-\frac{\partial E_p}{\partial z}dz \to \vec Fd\vec r=-dE_p \to


(Ep2Ep1)=Fdr-(E_{p2}-E_{p1})=\int \vec Fd\vec r


If the body has both potential and kinetic energy then


W=Fdr=mvf22mv022((Ep2Ep1))=W=\int \vec Fd\vec r=\frac{mv_{f}^2}{2}-\frac{mv_{0}^2}{2}-(-(E_{p2}-E_{p1}))=


=(mvf22+Ep2)(mv022+Ep1)=(\frac{mv_{f}^2}{2}+E_{p2})-(\frac{mv_{0}^2}{2}+E_{p1}) .







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS