Answer to Question #260272 in Physics for chan

Question #260272

derive;

Wnc=(½mvf2+mghf)-(½mv02+mgh0)


1
Expert's answer
2021-11-08T09:12:37-0500

For kinetic energy 


"m\\frac{dv_x}{dt}=F_x\\to\\frac{d}{dt}(\\frac{mv_x^2}{2})=F_xv_x \\to d(\\frac{mv_x^2}{2})=F_xdx\\to"


"\\frac{mv_{xf}^2}{2}-\\frac{mv_{x0}^2}{2}=\\int F_xdx" . In general "\\frac{mv_{f}^2}{2}-\\frac{mv_{0}^2}{2}=\\int \\vec Fd\\vec r"


For potential energy


"\\vec Fd\\vec r=-\\frac{\\partial E_p}{\\partial x}dx-\\frac{\\partial E_p}{\\partial y}dy-\\frac{\\partial E_p}{\\partial z}dz \\to \\vec Fd\\vec r=-dE_p \\to"


"-(E_{p2}-E_{p1})=\\int \\vec Fd\\vec r"


If the body has both potential and kinetic energy then


"W=\\int \\vec Fd\\vec r=\\frac{mv_{f}^2}{2}-\\frac{mv_{0}^2}{2}-(-(E_{p2}-E_{p1}))="


"=(\\frac{mv_{f}^2}{2}+E_{p2})-(\\frac{mv_{0}^2}{2}+E_{p1})" .







Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS