derive;
Wnc=(½mvf2+mghf)-(½mv02+mgh0)
For kinetic energy
"m\\frac{dv_x}{dt}=F_x\\to\\frac{d}{dt}(\\frac{mv_x^2}{2})=F_xv_x \\to d(\\frac{mv_x^2}{2})=F_xdx\\to"
"\\frac{mv_{xf}^2}{2}-\\frac{mv_{x0}^2}{2}=\\int F_xdx" . In general "\\frac{mv_{f}^2}{2}-\\frac{mv_{0}^2}{2}=\\int \\vec Fd\\vec r"
For potential energy
"\\vec Fd\\vec r=-\\frac{\\partial E_p}{\\partial x}dx-\\frac{\\partial E_p}{\\partial y}dy-\\frac{\\partial E_p}{\\partial z}dz \\to \\vec Fd\\vec r=-dE_p \\to"
"-(E_{p2}-E_{p1})=\\int \\vec Fd\\vec r"
If the body has both potential and kinetic energy then
"W=\\int \\vec Fd\\vec r=\\frac{mv_{f}^2}{2}-\\frac{mv_{0}^2}{2}-(-(E_{p2}-E_{p1}))="
"=(\\frac{mv_{f}^2}{2}+E_{p2})-(\\frac{mv_{0}^2}{2}+E_{p1})" .
Comments
Leave a comment