Question #257193

 A long jumper leaves the ground with an initial velocity of 12 m/s at an angle of 28-degrees above the horizontal. Determine the time of flight, the horizontal distance, and the peak height of the long-jumper.


1
Expert's answer
2021-10-31T18:11:38-0400

(a) Let's first find the time that the long jumper takes to reach the peak height:


vy=v0ygt,v_y = v_{0y}-gt,0=v0sinθgt,0=v_0sin\theta-gt,t=v0sinθg.t=\dfrac{v_0sin\theta}{g}.


Then, we can find the time of flight as follows:


tflight=2t=2v0sinθg,t_{flight}=2t=\dfrac{2v_0sin\theta}{g},tflight=2×12 ms×sin289.8 ms2=1.15 s.t_{flight}=\dfrac{2\times12\ \dfrac{m}{s}\times sin28^{\circ}}{9.8\ \dfrac{m}{s^2}}=1.15\ s.


(b) We can find the horizontal distance from the kinematic equation:


x=v0tcosθ=12 ms×1.15 s×cos28=12.18 m.x=v_0tcos\theta=12\ \dfrac{m}{s}\times1.15\ s\times cos28^{\circ}=12.18\ m.

(c) We can find the peak height of the long-jumper from the kinematic equation:


ymax=v0tsinθ12gt2.y_{max}=v_0tsin\theta-\dfrac{1}{2}gt^2.

Substituting tt into the second equation, we get:


ymax=v02sin2θg12g(v0sinθg)2=v02sin2θ2g,y_{max}=\dfrac{v_0^2sin^2\theta}{g}-\dfrac{1}{2}g(\dfrac{v_0sin\theta}{g})^2=\dfrac{v_0^2sin^2\theta}{2g},ymax=(12 ms)2×sin2282×9.8 ms2=1.62 m.y_{max}=\dfrac{(12\ \dfrac{m}{s})^2\times sin^228^{\circ}}{2\times9.8\ \dfrac{m}{s^2}}=1.62\ m.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS