Question #257185

 A student’s travel from his home to school is described as follows: 22 m westward, 35 m southeast, and 17 m, 15° north of east. Compute for his displacement.


1
Expert's answer
2021-10-27T08:49:04-0400

Let's first find xx- and yy-components of student's resultant displacement:

dres,x=22 m×cos180+35 m×cos(36045)+17 m×cos15=19.2 m,d_{res,x}=22\ m\times cos180^{\circ}+35\ m\times cos(360^{\circ}-45^{\circ})+17\ m\times cos15^{\circ}=19.2\ m,dres,y=22 m×sin180+35 m×sin(36045)+17 m×sin15=20.35 m.d_{res,y}=22\ m\times sin180^{\circ}+35\ m\times sin(360^{\circ}-45^{\circ})+17\ m\times sin15^{\circ}=-20.35\ m.

We can find the magnitude of student's resultant displacement from the Pythagorean theorem:


dres=dres,x2+dres,y2=(19.2 m)2+(20.35 m)2=28 m.d_{res}=\sqrt{d_{res,x}^2+d_{res,y}^2}=\sqrt{(19.2\ m)^2+(-20.35\ m)^2}=28\ m.


We can find the direction of student's resultant displacement from the geometry:


θ=tan1(dres,ydres,x),\theta=tan^{-1}(\dfrac{d_{res,y}}{d_{res,x}}),θ=tan1(20.35 m19.2 m)=46.7 S of E.\theta=tan^{-1}({\dfrac{-20.35\ m}{19.2\ m}})=46.7^{\circ}\ S\ of\ E.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Pene
27.10.21, 16:20

Thank you very much !!

LATEST TUTORIALS
APPROVED BY CLIENTS