Determine if the function y = A sinkx cosωt is a solution to the wave equation.
Given:
"y(x,t)=A\\sin kx\\cos \\omega t"
The wave equation
"\\frac{\\partial^2y}{\\partial t^2}-v^2\\frac{\\partial^2y}{\\partial x^2}=0"The speed of the wave "v=\\omega\/k"
We have
"\\frac{\\partial^2y}{\\partial x^2}=-k^2A\\sin kx\\cos \\omega t"
So
"-\\omega^2A\\sin kx\\cos \\omega t-v^2(-k^2A\\sin kx\\cos \\omega t)=""-k^2v^2A\\sin kx\\cos \\omega t+k^2v^2A\\sin kx\\cos \\omega t=0"
Comments
Leave a comment